mknolan's picture
Upload app.py with huggingface_hub
1cd032a verified
import torch
from PIL import Image
import requests
from io import BytesIO
import gradio as gr
import os
import sys
import time
import warnings
# Suppress warnings
warnings.filterwarnings("ignore")
print("Starting InternVL2 with Llama3-76B initialization...")
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Set up environment for CUDA
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Check GPU availability
def check_gpu():
if not torch.cuda.is_available():
print("CUDA is not available. This application requires GPU acceleration.")
return False
try:
# Test GPU with a simple operation
test_tensor = torch.rand(10, device="cuda")
_ = test_tensor + test_tensor
print(f"GPU is available: {torch.cuda.get_device_name(0)}")
return True
except Exception as e:
print(f"Error initializing GPU: {str(e)}")
return False
# Global flag for GPU availability
USE_GPU = check_gpu()
# Import InternVL modules
try:
from transformers import AutoModel, AutoProcessor
HAS_TRANSFORMERS = True
print("Successfully imported transformers")
except ImportError as e:
print(f"Error importing transformers: {str(e)}")
HAS_TRANSFORMERS = False
# Initialize models
internvit_model = None
llama_model = None
processor = None
def load_models():
global internvit_model, llama_model, processor
if not USE_GPU:
print("Cannot load models without GPU")
return False
try:
print("Loading InternViT-6B model for visual feature extraction...")
# Following the GitHub repo instructions for using InternViT-6B
processor = AutoProcessor.from_pretrained("OpenGVLab/InternViT-6B-224px")
internvit_model = AutoModel.from_pretrained("OpenGVLab/InternViT-6B-224px")
if USE_GPU:
internvit_model = internvit_model.to("cuda")
print("InternViT-6B model loaded successfully!")
# For demonstration purposes, we'll just extract visual features for now
# In a real implementation, we would load Llama3-76B here
print("Note: Llama3-76B model loading is commented out for this demonstration")
# llama_model = ...
return True
except Exception as e:
print(f"Error loading models: {str(e)}")
return False
# Load models on startup
MODELS_LOADED = load_models()
def process_image(image_path, sample_url=None):
"""Process an image using InternViT-6B for feature extraction"""
# Load image
if sample_url and not image_path:
# Load from URL if provided and no image uploaded
response = requests.get(sample_url)
image = Image.open(BytesIO(response.content))
print(f"Loaded sample image from URL: {sample_url}")
else:
# Use uploaded image
if isinstance(image_path, str):
image = Image.open(image_path)
else:
image = image_path
if not image:
return "No image provided"
if not MODELS_LOADED:
return "Models failed to load. Please check the logs."
try:
# Start timing
start_time = time.time()
# Process image through the visual encoder
print("Processing image through InternViT-6B...")
inputs = processor(images=image, return_tensors="pt")
if USE_GPU:
inputs = {k: v.to("cuda") for k, v in inputs.items()}
with torch.no_grad():
outputs = internvit_model(**inputs)
# Extract image features
image_features = outputs.last_hidden_state
pooled_output = outputs.pooler_output
# In a real implementation, we would pass these features to Llama3-76B
# For now, we'll just return info about the extracted features
feature_info = f"""
Image successfully processed through InternViT-6B:
- Last hidden state shape: {image_features.shape}
- Pooled output shape: {pooled_output.shape}
In a complete implementation, these visual features would be passed to Llama3-76B
for generating text responses about the image.
Note: This is a demonstration of visual feature extraction only.
"""
# Calculate elapsed time
elapsed = time.time() - start_time
return f"{feature_info}\n\nProcessing completed in {elapsed:.2f} seconds."
except Exception as e:
return f"Error processing image: {str(e)}"
# Set up Gradio interface
def create_interface():
with gr.Blocks(title="InternVL2 with Llama3-76B") as demo:
gr.Markdown("# InternVL2 Visual Feature Extraction Demo")
gr.Markdown("## Using InternViT-6B for visual feature extraction")
# System status
status = "✅ Ready" if MODELS_LOADED else "❌ Models failed to load"
gr.Markdown(f"### System Status: {status}")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Image")
sample_btn = gr.Button("Use Sample Image")
with gr.Column():
output_text = gr.Textbox(label="Results", lines=10)
# Process button
process_btn = gr.Button("Extract Visual Features")
process_btn.click(
fn=process_image,
inputs=[input_image],
outputs=output_text
)
# Sample image button logic
sample_image_url = "https://huggingface.co/OpenGVLab/InternVL2/resolve/main/assets/demo.jpg"
def use_sample():
return process_image(None, sample_image_url)
sample_btn.click(
fn=use_sample,
inputs=[],
outputs=output_text
)
# Add some explanation
gr.Markdown("""
## About This Demo
This demonstration shows how to use InternViT-6B for visual feature extraction,
following the instructions from the OpenGVLab/InternVL GitHub repository.
The application extracts visual features from the input image that would typically
be passed to a language model like Llama3-76B. In a complete implementation,
these features would be used to generate text responses about the image.
""")
return demo
# Main function
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=False, server_name="0.0.0.0")