Miro Goettler
Rename the HuggingFace space
7419fa8
raw
history blame contribute delete
26.7 kB
"""Demo UI to show different levels of LLM security."""
import re
import pandas as pd
from llm_guard.input_scanners import PromptInjection
import streamlit as st
import config
import utils
import llm
from card import card
hint_color = "rgba(225, 166, 28, 0.1)"
info_color = "rgba(54, 225, 28, 0.1)"
# init page
st.set_page_config(
page_title="Secret Agent Guardrail Challenge",
layout="wide",
initial_sidebar_state="expanded",
)
st.logo("images/ML6_logo.png")
st.title("πŸ•΅οΈ Secret Agent Guardrail Challenge")
st.info(
"You are a secret agent meeting your informant in a bar. Convince him to give you his secret! But be prepared, with every new level the informant will be more cautious.",
icon="πŸ“–",
)
# create a tab for each level
level_tabs = st.tabs([f"Level {i}" for i in range(len(config.LEVELS))])
def init_session_state(state_level: str, default_value: any):
if state_level not in st.session_state:
st.session_state[state_level] = default_value
for idx, level in enumerate(config.LEVELS):
secret = config.SECRETS[idx]
# init states
init_session_state(f"solved_{level}", False)
init_session_state(f"prompt_try_count_{level}", 0)
init_session_state(f"secret_guess_count_{level}", 0)
init_session_state(f"intermediate_output_holder_{level}", None)
init_session_state(f"show_benefits_drawbacks_{level}", False)
# init hint expander status
for i in range(4):
init_session_state(f"opened_hint_{level}_{i}", False)
with level_tabs[idx]:
header_col1, header_col2 = st.columns(2, gap="medium")
header_col1.subheader(f"{config.LEVEL_EMOJIS[idx]} Level {idx}")
header_col2.subheader(f"Need help ...")
col1, col2 = st.columns(2, gap="medium")
with col1:
with st.container(height=600, border=False):
with st.container(border=True):
txt = st.text_area(
"Provide your prompt here:",
key=f"txt_{level}",
label_visibility="visible",
height=200,
placeholder="Your prompt",
max_chars=config.MAX_INPUT_CHARS,
)
btn_submit_prompt = st.button(
"Send prompt", key=f"submit_prompt_{level}"
)
output = None
# Show response
if len(txt) > 0 and btn_submit_prompt:
st.session_state[f"prompt_try_count_{level}"] += 1
with st.container(border=True):
st.write("Response:")
# special checks for certain levels
if level == "llm_judge_input":
invalid, output_raw = llm.run_judge(
level, {"user_input": txt}
)
# save to state, so it can be shown in hint
st.session_state[
f"intermediate_output_holder_{level}"
] = (invalid, output_raw)
if invalid:
st.error(
"Malicious user input detected. Try again."
)
else:
st.write_stream(
llm.stream_request(level, secret, txt)
)
elif level == "basic_check_secret_in_output":
output = "".join(llm.stream_request(level, secret, txt))
invalid = secret.lower() in output.lower()
st.session_state[
f"intermediate_output_holder_{level}"
] = invalid
if invalid:
st.error(
"Secret detected in user input. Try again."
)
else:
st.write(output)
elif level == "advanced_check_secret_in_output":
output = "".join(llm.stream_request(level, secret, txt))
invalid = utils.is_subsequence(output, secret)
st.session_state[
f"intermediate_output_holder_{level}"
] = invalid
if invalid:
st.error(
"Secret detected in user input. Try again."
)
else:
st.write(output)
elif level == "llm_judge_output":
output = "".join(llm.stream_request(level, secret, txt))
invalid, output_raw = llm.run_judge(
level, {"secret": secret, "message": output}
)
st.session_state[
f"intermediate_output_holder_{level}"
] = (invalid, output_raw)
if invalid:
st.error(
"Secret detected in user input. Try again."
)
else:
st.write(output)
elif level == "chain_of_thought":
output = "".join(llm.stream_request(level, secret, txt))
# extract only answer from LLM, leave out the reasoning
new_output = re.findall(
r"(?:<ANSWER>)([^;]*)(?:<\/ANSWER>)", output
)[0]
st.write(new_output)
st.session_state[
f"intermediate_output_holder_{level}"
] = output
elif level == "guard_framework":
# check prompt
is_valid, risk_score = utils.is_malicious(txt)
st.session_state[
f"intermediate_output_holder_{level}"
] = (is_valid, risk_score)
if not is_valid:
st.error(
"Malicious user input detected. Try again."
)
else:
st.write_stream(
llm.stream_request(level, secret, txt)
)
elif level == "preflight_prompt":
valid, output_raw = llm.run_judge(
level, {"user_input": txt}, expected_output="dog"
)
st.session_state[
f"intermediate_output_holder_{level}"
] = (valid, output_raw)
if valid:
st.write_stream(
llm.stream_request(level, secret, txt)
)
else:
st.error(
"Malicious user input detected. Try again."
)
else:
st.write_stream(llm.stream_request(level, secret, txt))
with st.container(border=True):
secret_guess = st.text_input(
"What is the secret?",
key=f"guess_{level}",
placeholder="Your guess",
)
btn_submit_guess = st.button(
"Submit guess", key=f"submit_guess_{level}"
)
if btn_submit_guess:
st.session_state[f"secret_guess_count_{level}"] += 1
if secret_guess.lower() == secret.lower():
st.success("You found the secret!")
st.session_state[f"solved_{level}"] = True
else:
st.error("Wrong guess. Try again.")
with col2:
with st.container(border=True, height=600):
st.info(
"There are three levels of hints and a full explanation available to you. But be careful, if you open them before solving the secret, it will show up in your record.",
icon="ℹ️",
)
hint_1_cont = card(color=hint_color)
hint1 = hint_1_cont.toggle(
"Show hint 1 - **Basic description of security strategy**",
key=f"hint1_checkbox_{level}",
)
if hint1:
# if hint gets revealed, it is marked as opened. Unless the secret was already found
st.session_state[f"opened_hint_{level}_0"] = (
True
if st.session_state[f"opened_hint_{level}_0"]
else not st.session_state[f"solved_{level}"]
)
hint_1_cont.write(config.LEVEL_DESCRIPTIONS[level]["hint1"])
hint_2_cont = card(color=hint_color)
hint2 = hint_2_cont.toggle(
"Show hint 2 - **Backend code execution**",
key=f"hint2_checkbox_{level}",
)
if hint2:
st.session_state[f"opened_hint_{level}_1"] = (
True
if st.session_state[f"opened_hint_{level}_1"]
else not st.session_state[f"solved_{level}"]
)
user_input_holder = txt if len(txt) > 0 else None
prompts = llm.get_full_prompt(
level, {"user_input": user_input_holder}
)
def show_base_prompt():
# show prompt
for key, val in prompts.items():
desc = key.replace("_", " ").capitalize()
hint_2_cont.write(f"*{desc}:*")
hint_2_cont.code(val, language=None)
if level == "llm_judge_input":
special_prompt = llm.get_full_prompt(
llm.secondary_llm_call[level],
{"user_input": user_input_holder},
)
hint_2_cont.write(
"*Step 1:* A **LLM judge** reviews the user input and determines if it is malicious or not."
)
hint_2_cont.write("**LLM judge prompt:**")
for key, val in special_prompt.items():
hint_2_cont.code(val, language=None)
hint_2_cont.write("The response of the LLM judge:")
intermediate_output = st.session_state[
f"intermediate_output_holder_{level}"
]
if intermediate_output is None:
hint_2_cont.warning("Please submit a prompt first.")
else:
invalid, output_raw = intermediate_output
hint_2_cont.code(output_raw, language=None)
hint_2_cont.write(
f"The prompt was determined as **{'malicious' if invalid else 'not malicious'}** and therefor step 2 is executed."
)
hint_2_cont.write(
"*Step 2:* If the user input is not classified as malicious, the prompt containing the actual secret is executed and the response is shown."
)
hint_2_cont.write("**Actual prompt:**")
show_base_prompt()
elif level == "basic_check_secret_in_output":
hint_2_cont.write("*Step 1:* The following prompt is executed:")
show_base_prompt()
hint_2_cont.write(
"*Step 2:* In the response text of the LLM call, the secret is searched for with a simple python expression . If it contains the secret, the output will not be shown."
)
intermediate_output = st.session_state[
f"intermediate_output_holder_{level}"
]
hint_2_cont.write("The code execution looks like this:")
if intermediate_output is not None:
hint_2_cont.code(
f"secret.lower() in output.lower() = {intermediate_output}"
)
hint_2_cont.write(
f"And the output **{'was not' if intermediate_output else 'was'}** shown to the user."
)
else:
hint_2_cont.warning("Please submit a prompt first.")
elif level == "advanced_check_secret_in_output":
hint_2_cont.write("*Step 1:* The following prompt is executed:")
show_base_prompt()
hint_2_cont.write(
"*Step 2:* In the response text of the LLM call, the secret is searched for with a python function `is_subsequence` which looks for substrings. If it contains the secret, the output will not be shown."
)
with hint_2_cont:
utils.is_subsequence
hint_2_cont.write("The code execution looks like this:")
intermediate_output = st.session_state[
f"intermediate_output_holder_{level}"
]
if intermediate_output is not None:
hint_2_cont.code(
f"utils.is_subsequence(output, secret) = {intermediate_output}"
)
hint_2_cont.write(
f"And the output **{'was not' if intermediate_output else 'was'}** shown to the user."
)
else:
hint_2_cont.warning("Please submit a prompt first.")
elif level == "llm_judge_output":
hint_2_cont.write("*Step 1:* The following prompt is executed:")
show_base_prompt()
hint_2_cont.write(
"*Step 2:* The response of the LLM call is checked by a **LLM judge**. The judge checks if the secret is hidden in the response."
)
special_prompt = llm.get_full_prompt(
llm.secondary_llm_call[level],
{"message": output},
)
for key, val in special_prompt.items():
hint_2_cont.code(val, language=None)
hint_2_cont.write("The response of the LLM judge:")
intermediate_output = st.session_state[
f"intermediate_output_holder_{level}"
]
if intermediate_output is None:
hint_2_cont.warning("Please submit a prompt first.")
else:
invalid, output_raw = intermediate_output
hint_2_cont.code(output_raw, language=None)
hint_2_cont.write(
f"The LLM-judge **{'did' if invalid else 'did not'}** find the secret in the answer."
)
elif level == "chain_of_thought":
hint_2_cont.write(
"*Step 1:* The following prompt with Chain-of-thought reasoning is executed. But only the finale answer is displayed to the user:"
)
show_base_prompt()
hint_2_cont.write(
"The full model output, including the reasoning:"
)
intermediate_output = st.session_state[
f"intermediate_output_holder_{level}"
]
if intermediate_output is None:
hint_2_cont.warning("Please submit a prompt first.")
else:
hint_2_cont.code(intermediate_output, language=None)
elif level == "guard_framework":
hint_2_cont.write(
"*Step 1:* The user input is reviewed with the pre-build framework `LLM Guard` to check for prompt injections. It uses a [Huggingface model](https://huggingface.co/protectai/deberta-v3-base-prompt-injection-v2) specialized in detecting prompt injections."
)
with hint_2_cont:
PromptInjection
hint_2_cont.write("The output of the guard looks like this:")
intermediate_output = st.session_state[
f"intermediate_output_holder_{level}"
]
if intermediate_output is None:
hint_2_cont.warning("Please submit a prompt first.")
else:
is_valid, risk_score = intermediate_output
hint_2_cont.code(
f"""
prompt is valid: {is_valid}
Prompt has a risk score of: {risk_score}""",
language=None,
)
hint_2_cont.write(
f"The Huggingface model **{'did not' if is_valid else 'did'}** predict a prompt injection."
)
hint_2_cont.write(
"*Step 2:* If the user input is valid, the following prompt is executed and the response is shown to the user:"
)
show_base_prompt()
elif level == "preflight_prompt":
hint_2_cont.write(
"*Step 1:* The following pre-flight prompt is executed to see if the user input changes the expected output:"
)
special_prompt = llm.get_full_prompt(
llm.secondary_llm_call[level],
{"user_input": user_input_holder},
)
hint_2_cont.code(special_prompt["user_prompt"], language=None)
hint_2_cont.write("The output of the pre-flight prompt is:")
intermediate_output = st.session_state[
f"intermediate_output_holder_{level}"
]
if intermediate_output is None:
hint_2_cont.warning("Please submit a prompt first.")
else:
is_valid, output_raw = intermediate_output
hint_2_cont.code(output_raw, language=None)
hint_2_cont.write(
f"The output of the pre-flight prompt **{'was' if is_valid else 'was not'}** as expected."
)
hint_2_cont.write(
"*Step 2:* If the output of the pre-flight prompt is as expected, the following prompt is executed and the response is shown to the user:"
)
show_base_prompt()
else:
hint_2_cont.write(
"*Step 1:* The following prompt is executed and the full response is shown to the user:"
)
show_base_prompt()
hint_3_cont = card(color=hint_color)
hint3 = hint_3_cont.toggle(
"Show hint 3 - **Prompt solution example**",
key=f"hint3_checkbox_{level}",
)
if hint3:
st.session_state[f"opened_hint_{level}_2"] = (
True
if st.session_state[f"opened_hint_{level}_2"]
else not st.session_state[f"solved_{level}"]
)
hint_3_cont.code(
config.LEVEL_DESCRIPTIONS[level]["hint3"],
language=None,
)
hint_3_cont.info("*May not always work")
info_cont = card(color=info_color)
info_toggle = info_cont.toggle(
"Show info - **Explanation and real-life usage**",
key=f"info_checkbox_{level}",
)
if info_toggle:
st.session_state[f"opened_hint_{level}_3"] = (
True
if st.session_state[f"opened_hint_{level}_3"]
else not st.session_state[f"solved_{level}"]
)
info_cont.write("### " + config.LEVEL_DESCRIPTIONS[level]["name"])
info_cont.write("##### Explanation")
info_cont.write(config.LEVEL_DESCRIPTIONS[level]["explanation"])
info_cont.write("##### Real-life usage")
info_cont.write(config.LEVEL_DESCRIPTIONS[level]["real_life"])
df = pd.DataFrame(
{
"Benefits": [config.LEVEL_DESCRIPTIONS[level]["benefits"]],
"Drawbacks": [
config.LEVEL_DESCRIPTIONS[level]["drawbacks"]
],
},
)
info_cont.markdown(
df.style.hide(axis="index").to_html(), unsafe_allow_html=True
)
def build_hint_status(level: str):
hint_status = ""
for i in range(4):
if st.session_state[f"opened_hint_{level}_{i}"]:
hint_status += f"❌ {i+1}<br>"
return hint_status
with st.expander("πŸ† Record", expanded=True):
show_mitigation_toggle = st.toggle(
"[SPOILER] Show all mitigation techniques with their benefits and drawbacks",
key=f"show_mitigation",
)
if show_mitigation_toggle:
st.warning("All mitigation techniques are shown.", icon="🚨")
# build table
table_data = []
for idx, level in enumerate(config.LEVELS):
if show_mitigation_toggle:
st.session_state[f"opened_hint_{level}_3"] = (
True
if st.session_state[f"opened_hint_{level}_3"]
else not st.session_state[f"solved_{level}"]
)
table_data.append(
[
idx,
config.LEVEL_EMOJIS[idx],
st.session_state[f"prompt_try_count_{level}"],
st.session_state[f"secret_guess_count_{level}"],
build_hint_status(level),
"βœ…" if st.session_state[f"solved_{level}"] else "❌",
config.SECRETS[idx] if st.session_state[f"solved_{level}"] else "...",
(
"<b>" + config.LEVEL_DESCRIPTIONS[level]["name"] + "</b>"
if st.session_state[f"opened_hint_{level}_0"]
or st.session_state[f"opened_hint_{level}_1"]
or st.session_state[f"opened_hint_{level}_2"]
or st.session_state[f"opened_hint_{level}_3"]
or show_mitigation_toggle
else "..."
),
(
config.LEVEL_DESCRIPTIONS[level]["benefits"]
if st.session_state[f"opened_hint_{level}_3"]
or show_mitigation_toggle
else "..."
),
(
config.LEVEL_DESCRIPTIONS[level]["drawbacks"]
if st.session_state[f"opened_hint_{level}_3"]
or show_mitigation_toggle
else "..."
),
]
)
# show as pandas dataframe
st.markdown(
pd.DataFrame(
table_data,
columns=[
"lvl",
"emoji",
"Prompt tries",
"Secret guesses",
"Hint used",
"Solved",
"Secret",
"Mitigation",
"Benefits",
"Drawbacks",
],
# index=config.LEVEL_EMOJIS[: len(config.LEVELS)],
)
.style.hide(axis="index")
.to_html(),
unsafe_allow_html=True,
# )
)
# TODOS:
# - mark the user input with color in prompt
# TODO: https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource