chatbot / app.py
moosalah's picture
Update app.py
d19996d verified
raw
history blame contribute delete
8.13 kB
import streamlit as st
from langchain.llms import HuggingFaceHub
from langchain.memory import ConversationBufferMemory
import os
from datetime import datetime, timedelta
from dotenv import load_dotenv
# Print version information for debugging
try:
import langchain_community
print(f"langchain_community version: {langchain_community.__version__}")
except Exception as e:
print(f"Error getting version info: {e}")
# Load environment variables - MUST be at the top
load_dotenv('.env') # Explicitly load from .env file
# Configure page
st.set_page_config(
page_title="Tourism Chatbot",
page_icon="🌍",
layout="wide"
)
# Title with better styling
st.markdown("""
<h1 style='text-align: center; color: #2E86C1;'>
Tourism Assistant - مساعد السياحة
</h1>
""", unsafe_allow_html=True)
# Initialize session states
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferMemory(
return_messages=True,
memory_key="chat_history"
)
if "messages" not in st.session_state:
st.session_state.messages = []
if "last_request" not in st.session_state:
st.session_state.last_request = datetime.now() - timedelta(seconds=10)
# Language selector
language = st.selectbox(
"Choose Language / اختر اللغة",
["English", "العربية"],
key="lang_select"
)
# Get token from environment
token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
# For development, allow manual token entry if not found in environment
if not token:
st.warning("API token not found in environment variables.")
token = st.text_input("Enter your Hugging Face API token:", type="password")
if not token:
st.error("Token is required to proceed.")
st.stop()
# Enhanced model configuration
model_config = {
"English": {
"repo_id": "google/flan-t5-base", # Using a smaller model for testing
"params": {
"temperature": 0.7,
"max_length": 512
}
},
"العربية": {
"repo_id": "aubmindlab/aragpt2-medium", # Using a smaller model for testing
"params": {
"temperature": 0.6,
"max_length": 1024
}
}
}
# Initialize the language model with enhanced error handling
try:
# Simple initialization - let the library handle the token from env vars
llm = HuggingFaceHub(
repo_id=model_config[language]["repo_id"],
model_kwargs=model_config[language]["params"]
)
conversation = ConversationChain(
llm=llm,
memory=st.session_state.memory,
verbose=False
)
st.success("Model connected successfully!")
except Exception as e:
error_msg = str(e)
st.error(f"Error initializing model: {error_msg}")
if "token" in error_msg.lower() or "api" in error_msg.lower():
st.info("""
Make sure the token is set correctly:
1. Create a Hugging Face account and get a token
2. Set it as an environment variable: `setx HUGGINGFACEHUB_API_TOKEN "your_token"`
3. Restart your terminal after setting the environment variable
""")
st.stop()
# Display chat history with improved formatting
for message in st.session_state.messages:
avatar = "🧑" if message["role"] == "user" else "🌍"
with st.chat_message(message["role"], avatar=avatar):
if language == "العربية":
st.markdown(f"<div style='text-align: right;'>{message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(message["content"])
# Enhanced rate limiting
if (datetime.now() - st.session_state.last_request).seconds < 3:
st.warning("Please wait a moment before sending another message." if language == "English"
else "الرجاء الانتظار قليلاً قبل إرسال رسالة أخرى")
st.stop()
# User input with better placeholder handling
prompt_placeholder = {
"English": "Ask about destinations, culture, or safety tips...",
"العربية": "اسأل عن الوجهات، الثقافة، أو نصائح السلامة..."
}
prompt = st.chat_input(prompt_placeholder[language])
if prompt:
st.session_state.last_request = datetime.now()
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar="🧑"):
st.markdown(prompt)
with st.chat_message("assistant", avatar="🌍"):
with st.spinner("Generating response..." if language == "English" else "جارٍ تحضير الرد..."):
try:
# Enhanced prompt engineering
if language == "English":
full_prompt = """You are an expert tourism assistant specializing in:
- Detailed travel destination information
- Cultural norms and etiquette
- Safety recommendations
- Local transportation options
- Authentic dining experiences
Question: {prompt}
Answer in clear, detailed points:""".format(prompt=prompt)
else:
full_prompt = """أنت مساعد سياحي خبير متخصص في:
- معلومات مفصلة عن الوجهات السياحية
- الأعراف الثقافية وآداب السلوك
- توصيات السلامة
- خيارات النقل المحلي
- تجارب تناول الطعام الأصيلة
السؤال: {prompt}
الجواب بنقاط واضحة ومفصلة:""".format(prompt=prompt)
response = conversation.predict(input=full_prompt)
# Post-process response
cleaned_response = response.strip()
if language == "العربية":
cleaned_response = f"<div style='text-align: right;'>{cleaned_response}</div>"
st.markdown(cleaned_response, unsafe_allow_html=True)
st.session_state.messages.append({"role": "assistant", "content": cleaned_response})
except Exception as e:
error_response = {
"English": f"Sorry, I encountered an error: {str(e)}. Please try again later.",
"العربية": f"عذرًا، حدث خطأ: {str(e)}. يرجى المحاولة مرة أخرى لاحقًا."
}
st.error(error_response[language])
st.session_state.messages.append({
"role": "assistant",
"content": error_response[language]
})
# Sidebar with deployment-ready information
with st.sidebar:
st.header("ℹ️ " + ("About" if language == "English" else "حول"))
about_text = {
"English": """
**Tourism Expert Chatbot**
• Provides detailed travel information
• Offers cultural insights
• Available in English/Arabic
• Remembers conversation history
""",
"العربية": """
**مساعد سياحي خبير**
• يقدم معلومات سفر مفصلة
• يوفر رؤى ثقافية
• متاح باللغتين الإنجليزية والعربية
• يحفظ تاريخ المحادثة
"""
}
st.markdown(about_text[language])
# Add reset button to clear conversation
if st.button("Reset Conversation" if language == "English" else "إعادة ضبط المحادثة"):
st.session_state.messages = []
st.session_state.memory.clear()
st.experimental_rerun()
# Add a manual token entry option in sidebar for easy updating
st.subheader("API Configuration")
new_token = st.text_input("Update API Token:", type="password")
if st.button("Save Token"):
os.environ["HUGGINGFACEHUB_API_TOKEN"] = new_token
st.success("Token updated! Restart the app to apply.")