Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import SamModel, SamProcessor
|
7 |
+
from diffusers import StableDiffusionInpaintPipeline
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
# Set up device
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
print(f"Using device: {device}")
|
14 |
+
|
15 |
+
# Load SAM model for segmentation
|
16 |
+
print("Loading SAM model...")
|
17 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
|
18 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
19 |
+
|
20 |
+
# Load Stable Diffusion for outpainting
|
21 |
+
print("Loading Stable Diffusion model...")
|
22 |
+
inpaint_model = StableDiffusionInpaintPipeline.from_pretrained(
|
23 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
24 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
25 |
+
).to(device)
|
26 |
+
|
27 |
+
def get_sam_mask(image, points=None):
|
28 |
+
"""Get segmentation mask using SAM model"""
|
29 |
+
if points is None:
|
30 |
+
# If no points provided, use center point
|
31 |
+
height, width = image.shape[:2]
|
32 |
+
points = [[[width // 2, height // 2]]]
|
33 |
+
|
34 |
+
# Convert to PIL if needed
|
35 |
+
if not isinstance(image, Image.Image):
|
36 |
+
image_pil = Image.fromarray(image)
|
37 |
+
else:
|
38 |
+
image_pil = image
|
39 |
+
|
40 |
+
# Process the image and point prompts
|
41 |
+
inputs = sam_processor(
|
42 |
+
images=image_pil,
|
43 |
+
input_points=points,
|
44 |
+
return_tensors="pt"
|
45 |
+
).to(device)
|
46 |
+
|
47 |
+
# Generate mask
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = sam_model(**inputs)
|
50 |
+
masks = sam_processor.image_processor.post_process_masks(
|
51 |
+
outputs.pred_masks.cpu(),
|
52 |
+
inputs["original_sizes"].cpu(),
|
53 |
+
inputs["reshaped_input_sizes"].cpu()
|
54 |
+
)
|
55 |
+
|
56 |
+
# Get the mask
|
57 |
+
mask = masks[0][0].numpy()
|
58 |
+
return mask
|
59 |
+
|
60 |
+
def adjust_aspect_ratio(image, mask, target_ratio, prompt=""):
|
61 |
+
"""Adjust image to target aspect ratio while preserving important content"""
|
62 |
+
# Convert PIL to numpy if needed
|
63 |
+
if isinstance(image, Image.Image):
|
64 |
+
image_np = np.array(image)
|
65 |
+
else:
|
66 |
+
image_np = image
|
67 |
+
|
68 |
+
h, w = image_np.shape[:2]
|
69 |
+
current_ratio = w / h
|
70 |
+
target_ratio_value = eval(target_ratio.replace(':', '/'))
|
71 |
+
|
72 |
+
# Determine if we need to add width or height
|
73 |
+
if current_ratio < target_ratio_value:
|
74 |
+
# Need to add width (outpaint left/right)
|
75 |
+
new_width = int(h * target_ratio_value)
|
76 |
+
new_height = h
|
77 |
+
|
78 |
+
# Calculate padding
|
79 |
+
pad_width = new_width - w
|
80 |
+
pad_left = pad_width // 2
|
81 |
+
pad_right = pad_width - pad_left
|
82 |
+
|
83 |
+
# Create canvas with padding
|
84 |
+
result = np.zeros((new_height, new_width, 3), dtype=np.uint8)
|
85 |
+
# Place original image in the center
|
86 |
+
result[:, pad_left:pad_left+w, :] = image_np
|
87 |
+
|
88 |
+
# Create mask for inpainting
|
89 |
+
inpaint_mask = np.ones((new_height, new_width), dtype=np.uint8) * 255
|
90 |
+
inpaint_mask[:, pad_left:pad_left+w] = 0
|
91 |
+
|
92 |
+
# Perform outpainting using Stable Diffusion
|
93 |
+
result = outpaint_regions(result, inpaint_mask, prompt)
|
94 |
+
|
95 |
+
else:
|
96 |
+
# Need to add height (outpaint top/bottom)
|
97 |
+
new_width = w
|
98 |
+
new_height = int(w / target_ratio_value)
|
99 |
+
|
100 |
+
# Calculate padding
|
101 |
+
pad_height = new_height - h
|
102 |
+
pad_top = pad_height // 2
|
103 |
+
pad_bottom = pad_height - pad_top
|
104 |
+
|
105 |
+
# Create canvas with padding
|
106 |
+
result = np.zeros((new_height, new_width, 3), dtype=np.uint8)
|
107 |
+
# Place original image in the center
|
108 |
+
result[pad_top:pad_top+h, :, :] = image_np
|
109 |
+
|
110 |
+
# Create mask for inpainting
|
111 |
+
inpaint_mask = np.ones((new_height, new_width), dtype=np.uint8) * 255
|
112 |
+
inpaint_mask[pad_top:pad_top+h, :] = 0
|
113 |
+
|
114 |
+
# Perform outpainting using Stable Diffusion
|
115 |
+
result = outpaint_regions(result, inpaint_mask, prompt)
|
116 |
+
|
117 |
+
return result
|
118 |
+
|
119 |
+
def outpaint_regions(image, mask, prompt):
|
120 |
+
"""Use Stable Diffusion to outpaint masked regions"""
|
121 |
+
# Convert to PIL images
|
122 |
+
image_pil = Image.fromarray(image)
|
123 |
+
mask_pil = Image.fromarray(mask)
|
124 |
+
|
125 |
+
# If prompt is empty, use a generic one
|
126 |
+
if not prompt or prompt.strip() == "":
|
127 |
+
prompt = "seamless extension of the image, same style, same scene"
|
128 |
+
|
129 |
+
# Generate the outpainting
|
130 |
+
output = inpaint_model(
|
131 |
+
prompt=prompt,
|
132 |
+
image=image_pil,
|
133 |
+
mask_image=mask_pil,
|
134 |
+
guidance_scale=7.5,
|
135 |
+
num_inference_steps=25
|
136 |
+
).images[0]
|
137 |
+
|
138 |
+
return np.array(output)
|
139 |
+
|
140 |
+
def process_image(input_image, target_ratio="16:9", prompt=""):
|
141 |
+
"""Main processing function for the Gradio interface"""
|
142 |
+
try:
|
143 |
+
# Convert from Gradio format
|
144 |
+
if isinstance(input_image, dict) and 'image' in input_image:
|
145 |
+
image = input_image['image']
|
146 |
+
else:
|
147 |
+
image = input_image
|
148 |
+
|
149 |
+
# Convert PIL to numpy if needed
|
150 |
+
if isinstance(image, Image.Image):
|
151 |
+
image_np = np.array(image)
|
152 |
+
else:
|
153 |
+
image_np = image
|
154 |
+
|
155 |
+
# Get SAM mask to identify important regions
|
156 |
+
mask = get_sam_mask(image_np)
|
157 |
+
|
158 |
+
# Adjust aspect ratio while preserving content
|
159 |
+
result = adjust_aspect_ratio(image_np, mask, target_ratio, prompt)
|
160 |
+
|
161 |
+
# Convert result to PIL for visualization
|
162 |
+
result_pil = Image.fromarray(result)
|
163 |
+
|
164 |
+
return result_pil
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
print(f"Error processing image: {e}")
|
168 |
+
return None
|
169 |
+
|
170 |
+
# Create the Gradio interface
|
171 |
+
with gr.Blocks(title="Automatic Aspect Ratio Adjuster") as demo:
|
172 |
+
gr.Markdown("# Automatic Aspect Ratio Adjuster")
|
173 |
+
gr.Markdown("Upload an image, choose your target aspect ratio, and let the AI adjust it while preserving important content.")
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
with gr.Column():
|
177 |
+
input_image = gr.Image(label="Input Image")
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
aspect_ratio = gr.Dropdown(
|
181 |
+
choices=["16:9", "4:3", "1:1", "9:16", "3:4"],
|
182 |
+
value="16:9",
|
183 |
+
label="Target Aspect Ratio"
|
184 |
+
)
|
185 |
+
|
186 |
+
prompt = gr.Textbox(
|
187 |
+
label="Outpainting Prompt (optional)",
|
188 |
+
placeholder="Describe the scene for better outpainting"
|
189 |
+
)
|
190 |
+
|
191 |
+
submit_btn = gr.Button("Process Image")
|
192 |
+
|
193 |
+
with gr.Column():
|
194 |
+
output_image = gr.Image(label="Processed Image")
|
195 |
+
|
196 |
+
submit_btn.click(
|
197 |
+
process_image,
|
198 |
+
inputs=[input_image, aspect_ratio, prompt],
|
199 |
+
outputs=output_image
|
200 |
+
)
|
201 |
+
|
202 |
+
gr.Markdown("""
|
203 |
+
## How it works
|
204 |
+
1. SAM (Segment Anything Model) identifies important content in your image
|
205 |
+
2. The algorithm calculates how to adjust the aspect ratio while preserving this content
|
206 |
+
3. Stable Diffusion fills in the new areas with AI-generated content that matches the original image
|
207 |
+
|
208 |
+
## Tips
|
209 |
+
- For best results, provide a descriptive prompt that matches the scene
|
210 |
+
- Try different aspect ratios to see what works best
|
211 |
+
- The model works best with clear, well-lit images
|
212 |
+
""")
|
213 |
+
|
214 |
+
# Launch the app
|
215 |
+
if __name__ == "__main__":
|
216 |
+
demo.launch()
|