Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,10 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
-
from PIL import Image
|
6 |
from transformers import SamModel, SamProcessor
|
7 |
from diffusers import StableDiffusionInpaintPipeline
|
8 |
-
import
|
9 |
-
from io import BytesIO
|
10 |
|
11 |
# Set up device
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -24,27 +23,35 @@ inpaint_model = StableDiffusionInpaintPipeline.from_pretrained(
|
|
24 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
25 |
).to(device)
|
26 |
|
27 |
-
def
|
28 |
-
"""Get
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
points = [[[width // 2, height // 2]]]
|
33 |
-
|
34 |
-
# Convert to PIL if needed
|
35 |
-
if not isinstance(image, Image.Image):
|
36 |
-
image_pil = Image.fromarray(image)
|
37 |
else:
|
38 |
-
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
inputs = sam_processor(
|
42 |
-
images=
|
43 |
input_points=points,
|
44 |
return_tensors="pt"
|
45 |
).to(device)
|
46 |
|
47 |
-
# Generate
|
48 |
with torch.no_grad():
|
49 |
outputs = sam_model(**inputs)
|
50 |
masks = sam_processor.image_processor.post_process_masks(
|
@@ -53,86 +60,123 @@ def get_sam_mask(image, points=None):
|
|
53 |
inputs["reshaped_input_sizes"].cpu()
|
54 |
)
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"""Adjust image to target aspect ratio while preserving important content"""
|
62 |
# Convert PIL to numpy if needed
|
63 |
if isinstance(image, Image.Image):
|
|
|
64 |
image_np = np.array(image)
|
65 |
else:
|
66 |
image_np = image
|
|
|
67 |
|
|
|
68 |
h, w = image_np.shape[:2]
|
69 |
current_ratio = w / h
|
70 |
target_ratio_value = eval(target_ratio.replace(':', '/'))
|
71 |
|
72 |
-
#
|
|
|
|
|
|
|
73 |
if current_ratio < target_ratio_value:
|
74 |
# Need to add width (outpaint left/right)
|
75 |
new_width = int(h * target_ratio_value)
|
76 |
new_height = h
|
77 |
-
|
78 |
-
# Calculate padding
|
79 |
-
pad_width = new_width - w
|
80 |
-
pad_left = pad_width // 2
|
81 |
-
pad_right = pad_width - pad_left
|
82 |
-
|
83 |
-
# Create canvas with padding
|
84 |
-
result = np.zeros((new_height, new_width, 3), dtype=np.uint8)
|
85 |
-
# Place original image in the center
|
86 |
-
result[:, pad_left:pad_left+w, :] = image_np
|
87 |
-
|
88 |
-
# Create mask for inpainting
|
89 |
-
inpaint_mask = np.ones((new_height, new_width), dtype=np.uint8) * 255
|
90 |
-
inpaint_mask[:, pad_left:pad_left+w] = 0
|
91 |
-
|
92 |
-
# Perform outpainting using Stable Diffusion
|
93 |
-
result = outpaint_regions(result, inpaint_mask, prompt)
|
94 |
-
|
95 |
else:
|
96 |
# Need to add height (outpaint top/bottom)
|
97 |
new_width = w
|
98 |
new_height = int(w / target_ratio_value)
|
99 |
-
|
100 |
-
# Calculate padding
|
101 |
-
pad_height = new_height - h
|
102 |
-
pad_top = pad_height // 2
|
103 |
-
pad_bottom = pad_height - pad_top
|
104 |
-
|
105 |
-
# Create canvas with padding
|
106 |
-
result = np.zeros((new_height, new_width, 3), dtype=np.uint8)
|
107 |
-
# Place original image in the center
|
108 |
-
result[pad_top:pad_top+h, :, :] = image_np
|
109 |
-
|
110 |
-
# Create mask for inpainting
|
111 |
-
inpaint_mask = np.ones((new_height, new_width), dtype=np.uint8) * 255
|
112 |
-
inpaint_mask[pad_top:pad_top+h, :] = 0
|
113 |
-
|
114 |
-
# Perform outpainting using Stable Diffusion
|
115 |
-
result = outpaint_regions(result, inpaint_mask, prompt)
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
mask_pil = Image.fromarray(mask)
|
124 |
|
125 |
-
#
|
126 |
if not prompt or prompt.strip() == "":
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
-
#
|
130 |
output = inpaint_model(
|
131 |
prompt=prompt,
|
132 |
-
image=
|
133 |
mask_image=mask_pil,
|
134 |
guidance_scale=7.5,
|
135 |
-
num_inference_steps=
|
136 |
).images[0]
|
137 |
|
138 |
return np.array(output)
|
@@ -140,7 +184,7 @@ def outpaint_regions(image, mask, prompt):
|
|
140 |
def process_image(input_image, target_ratio="16:9", prompt=""):
|
141 |
"""Main processing function for the Gradio interface"""
|
142 |
try:
|
143 |
-
# Convert from Gradio format
|
144 |
if isinstance(input_image, dict) and 'image' in input_image:
|
145 |
image = input_image['image']
|
146 |
else:
|
@@ -152,11 +196,8 @@ def process_image(input_image, target_ratio="16:9", prompt=""):
|
|
152 |
else:
|
153 |
image_np = image
|
154 |
|
155 |
-
# Get SAM mask to identify important regions
|
156 |
-
mask = get_sam_mask(image_np)
|
157 |
-
|
158 |
# Adjust aspect ratio while preserving content
|
159 |
-
result = adjust_aspect_ratio(image_np,
|
160 |
|
161 |
# Convert result to PIL for visualization
|
162 |
result_pil = Image.fromarray(result)
|
@@ -168,9 +209,9 @@ def process_image(input_image, target_ratio="16:9", prompt=""):
|
|
168 |
return None
|
169 |
|
170 |
# Create the Gradio interface
|
171 |
-
with gr.Blocks(title="
|
172 |
-
gr.Markdown("#
|
173 |
-
gr.Markdown("Upload an image, choose your target aspect ratio, and
|
174 |
|
175 |
with gr.Row():
|
176 |
with gr.Column():
|
@@ -178,7 +219,7 @@ with gr.Blocks(title="Automatic Aspect Ratio Adjuster") as demo:
|
|
178 |
|
179 |
with gr.Row():
|
180 |
aspect_ratio = gr.Dropdown(
|
181 |
-
choices=["16:9", "4:3", "1:1", "9:16", "3:4"],
|
182 |
value="16:9",
|
183 |
label="Target Aspect Ratio"
|
184 |
)
|
@@ -201,9 +242,9 @@ with gr.Blocks(title="Automatic Aspect Ratio Adjuster") as demo:
|
|
201 |
|
202 |
gr.Markdown("""
|
203 |
## How it works
|
204 |
-
1. SAM (Segment Anything Model) identifies important
|
205 |
-
2. The algorithm calculates
|
206 |
-
3. Stable Diffusion fills in
|
207 |
|
208 |
## Tips
|
209 |
- For best results, provide a descriptive prompt that matches the scene
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
+
from PIL import Image, ImageOps
|
6 |
from transformers import SamModel, SamProcessor
|
7 |
from diffusers import StableDiffusionInpaintPipeline
|
8 |
+
import os
|
|
|
9 |
|
10 |
# Set up device
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
23 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
24 |
).to(device)
|
25 |
|
26 |
+
def get_importance_map(image, points=None):
|
27 |
+
"""Get importance map using SAM model to identify key content regions"""
|
28 |
+
# Convert to numpy if needed
|
29 |
+
if isinstance(image, Image.Image):
|
30 |
+
image_np = np.array(image)
|
|
|
|
|
|
|
|
|
|
|
31 |
else:
|
32 |
+
image_np = image
|
33 |
|
34 |
+
h, w = image_np.shape[:2]
|
35 |
+
|
36 |
+
# If no points provided, use grid sampling to identify important areas
|
37 |
+
if points is None:
|
38 |
+
# Create a grid of points to sample the image
|
39 |
+
x_points = np.linspace(w//4, 3*w//4, 5, dtype=int)
|
40 |
+
y_points = np.linspace(h//4, 3*h//4, 5, dtype=int)
|
41 |
+
grid_points = []
|
42 |
+
for y in y_points:
|
43 |
+
for x in x_points:
|
44 |
+
grid_points.append([x, y])
|
45 |
+
points = [grid_points]
|
46 |
+
|
47 |
+
# Process image through SAM
|
48 |
inputs = sam_processor(
|
49 |
+
images=image_np,
|
50 |
input_points=points,
|
51 |
return_tensors="pt"
|
52 |
).to(device)
|
53 |
|
54 |
+
# Generate masks
|
55 |
with torch.no_grad():
|
56 |
outputs = sam_model(**inputs)
|
57 |
masks = sam_processor.image_processor.post_process_masks(
|
|
|
60 |
inputs["reshaped_input_sizes"].cpu()
|
61 |
)
|
62 |
|
63 |
+
# Combine all masks to create importance map
|
64 |
+
importance_map = np.zeros((h, w), dtype=np.float32)
|
65 |
+
for i in range(len(masks[0])):
|
66 |
+
importance_map += masks[0][i].numpy().astype(np.float32)
|
67 |
+
|
68 |
+
# Normalize to 0-1
|
69 |
+
if importance_map.max() > 0:
|
70 |
+
importance_map = importance_map / importance_map.max()
|
71 |
+
|
72 |
+
return importance_map
|
73 |
|
74 |
+
def find_optimal_placement(importance_map, original_size, new_size):
|
75 |
+
"""Find the optimal placement for the original image within the new canvas based on importance"""
|
76 |
+
oh, ow = original_size
|
77 |
+
nh, nw = new_size
|
78 |
+
|
79 |
+
# If the new size is smaller in any dimension, then just center it
|
80 |
+
if nh <= oh or nw <= ow:
|
81 |
+
x_offset = max(0, (nw - ow) // 2)
|
82 |
+
y_offset = max(0, (nh - oh) // 2)
|
83 |
+
return x_offset, y_offset
|
84 |
+
|
85 |
+
# Calculate all possible positions
|
86 |
+
possible_x = nw - ow + 1
|
87 |
+
possible_y = nh - oh + 1
|
88 |
+
|
89 |
+
best_score = -np.inf
|
90 |
+
best_x = 0
|
91 |
+
best_y = 0
|
92 |
+
|
93 |
+
# Create a border-weighted importance map (gives extra weight to content near borders)
|
94 |
+
y_coords, x_coords = np.ogrid[:oh, :ow]
|
95 |
+
border_weight = np.minimum(np.minimum(x_coords, ow-1-x_coords), np.minimum(y_coords, oh-1-y_coords))
|
96 |
+
border_weight = 1.0 - border_weight / border_weight.max()
|
97 |
+
weighted_importance = importance_map * (1.0 + 0.5 * border_weight)
|
98 |
+
|
99 |
+
# Optimize for 9 positions (corners, center of edges, and center)
|
100 |
+
positions = [
|
101 |
+
(0, 0), # Top-left
|
102 |
+
(0, (possible_y-1)//2), # Middle-left
|
103 |
+
(0, possible_y-1), # Bottom-left
|
104 |
+
((possible_x-1)//2, 0), # Top-center
|
105 |
+
((possible_x-1)//2, (possible_y-1)//2), # Center
|
106 |
+
((possible_x-1)//2, possible_y-1), # Bottom-center
|
107 |
+
(possible_x-1, 0), # Top-right
|
108 |
+
(possible_x-1, (possible_y-1)//2), # Middle-right
|
109 |
+
(possible_x-1, possible_y-1) # Bottom-right
|
110 |
+
]
|
111 |
+
|
112 |
+
# Find position with highest importance score
|
113 |
+
for x, y in positions:
|
114 |
+
# Calculate importance score for this position
|
115 |
+
score = weighted_importance.sum()
|
116 |
+
if score > best_score:
|
117 |
+
best_score = score
|
118 |
+
best_x = x
|
119 |
+
best_y = y
|
120 |
+
|
121 |
+
return best_x, best_y
|
122 |
+
|
123 |
+
def adjust_aspect_ratio(image, target_ratio, prompt=""):
|
124 |
"""Adjust image to target aspect ratio while preserving important content"""
|
125 |
# Convert PIL to numpy if needed
|
126 |
if isinstance(image, Image.Image):
|
127 |
+
image_pil = image
|
128 |
image_np = np.array(image)
|
129 |
else:
|
130 |
image_np = image
|
131 |
+
image_pil = Image.fromarray(image_np)
|
132 |
|
133 |
+
# Get dimensions
|
134 |
h, w = image_np.shape[:2]
|
135 |
current_ratio = w / h
|
136 |
target_ratio_value = eval(target_ratio.replace(':', '/'))
|
137 |
|
138 |
+
# Generate importance map to identify key regions
|
139 |
+
importance_map = get_importance_map(image_np)
|
140 |
+
|
141 |
+
# Calculate new dimensions
|
142 |
if current_ratio < target_ratio_value:
|
143 |
# Need to add width (outpaint left/right)
|
144 |
new_width = int(h * target_ratio_value)
|
145 |
new_height = h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
else:
|
147 |
# Need to add height (outpaint top/bottom)
|
148 |
new_width = w
|
149 |
new_height = int(w / target_ratio_value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
# Find optimal placement based on importance map
|
152 |
+
x_offset, y_offset = find_optimal_placement(importance_map, (h, w), (new_height, new_width))
|
153 |
+
|
154 |
+
# Create new canvas
|
155 |
+
result = np.zeros((new_height, new_width, 3), dtype=np.uint8)
|
156 |
+
mask = np.ones((new_height, new_width), dtype=np.uint8) * 255
|
157 |
+
|
158 |
+
# Place original image at calculated position
|
159 |
+
result[y_offset:y_offset+h, x_offset:x_offset+w] = image_np
|
160 |
+
mask[y_offset:y_offset+h, x_offset:x_offset+w] = 0
|
161 |
+
|
162 |
+
# Convert to PIL for inpainting
|
163 |
+
result_pil = Image.fromarray(result)
|
164 |
mask_pil = Image.fromarray(mask)
|
165 |
|
166 |
+
# Use default prompt if none provided
|
167 |
if not prompt or prompt.strip() == "":
|
168 |
+
if len(image_np.shape) == 3 and image_np.shape[2] == 4: # Check if image has alpha channel
|
169 |
+
prompt = "seamless extension of the image, same style and content"
|
170 |
+
else:
|
171 |
+
prompt = "seamless extension of the image, same style, same scene, consistent lighting"
|
172 |
|
173 |
+
# Perform outpainting using Stable Diffusion
|
174 |
output = inpaint_model(
|
175 |
prompt=prompt,
|
176 |
+
image=result_pil,
|
177 |
mask_image=mask_pil,
|
178 |
guidance_scale=7.5,
|
179 |
+
num_inference_steps=30
|
180 |
).images[0]
|
181 |
|
182 |
return np.array(output)
|
|
|
184 |
def process_image(input_image, target_ratio="16:9", prompt=""):
|
185 |
"""Main processing function for the Gradio interface"""
|
186 |
try:
|
187 |
+
# Convert from Gradio format if needed
|
188 |
if isinstance(input_image, dict) and 'image' in input_image:
|
189 |
image = input_image['image']
|
190 |
else:
|
|
|
196 |
else:
|
197 |
image_np = image
|
198 |
|
|
|
|
|
|
|
199 |
# Adjust aspect ratio while preserving content
|
200 |
+
result = adjust_aspect_ratio(image_np, target_ratio, prompt)
|
201 |
|
202 |
# Convert result to PIL for visualization
|
203 |
result_pil = Image.fromarray(result)
|
|
|
209 |
return None
|
210 |
|
211 |
# Create the Gradio interface
|
212 |
+
with gr.Blocks(title="Smart Aspect Ratio Adjuster") as demo:
|
213 |
+
gr.Markdown("# Smart Aspect Ratio Adjuster")
|
214 |
+
gr.Markdown("Upload an image, choose your target aspect ratio, and the AI will adjust it while intelligently preserving important content.")
|
215 |
|
216 |
with gr.Row():
|
217 |
with gr.Column():
|
|
|
219 |
|
220 |
with gr.Row():
|
221 |
aspect_ratio = gr.Dropdown(
|
222 |
+
choices=["16:9", "4:3", "1:1", "9:16", "3:4", "2:1", "1:2"],
|
223 |
value="16:9",
|
224 |
label="Target Aspect Ratio"
|
225 |
)
|
|
|
242 |
|
243 |
gr.Markdown("""
|
244 |
## How it works
|
245 |
+
1. **Content Analysis**: SAM (Segment Anything Model) identifies important regions in your image
|
246 |
+
2. **Smart Placement**: The algorithm calculates optimal positioning to preserve key content
|
247 |
+
3. **AI Outpainting**: Stable Diffusion fills in new areas with matching content
|
248 |
|
249 |
## Tips
|
250 |
- For best results, provide a descriptive prompt that matches the scene
|