""" PROMPT> python -m src.plan.run_plan_pipeline """ from datetime import datetime import logging import json import luigi from pathlib import Path from src.plan.filenames import FilenameEnum from src.plan.speedvsdetail import SpeedVsDetailEnum from src.plan.plan_file import PlanFile from src.plan.find_plan_prompt import find_plan_prompt from src.assume.make_assumptions import MakeAssumptions from src.assume.assumption_orchestrator import AssumptionOrchestrator from src.expert.pre_project_assessment import PreProjectAssessment from src.plan.create_project_plan import CreateProjectPlan from src.swot.swot_analysis import SWOTAnalysis from src.expert.expert_finder import ExpertFinder from src.expert.expert_criticism import ExpertCriticism from src.expert.expert_orchestrator import ExpertOrchestrator from src.plan.create_wbs_level1 import CreateWBSLevel1 from src.plan.create_wbs_level2 import CreateWBSLevel2 from src.plan.create_wbs_level3 import CreateWBSLevel3 from src.plan.create_pitch import CreatePitch from src.plan.identify_wbs_task_dependencies import IdentifyWBSTaskDependencies from src.plan.estimate_wbs_task_durations import EstimateWBSTaskDurations from src.wbs.wbs_task import WBSTask, WBSProject from src.wbs.wbs_populate import WBSPopulate from src.llm_factory import get_llm from src.format_json_for_use_in_query import format_json_for_use_in_query from src.utils.get_env_as_string import get_env_as_string logger = logging.getLogger(__name__) DEFAULT_LLM_MODEL = "ollama-llama3.1" class PlanTask(luigi.Task): # Default it to the current timestamp, eg. 19841231_235959 run_id = luigi.Parameter(default=datetime.now().strftime("%Y%m%d_%H%M%S")) # By default, run everything but it's slow. # This can be overridden in developer mode, where a quick turnaround is needed, and the details are not important. speedvsdetail = luigi.EnumParameter(enum=SpeedVsDetailEnum, default=SpeedVsDetailEnum.ALL_DETAILS_BUT_SLOW) @property def run_dir(self) -> Path: return Path('run') / self.run_id def file_path(self, filename: FilenameEnum) -> Path: return self.run_dir / filename.value class SetupTask(PlanTask): def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.INITIAL_PLAN))) def run(self): # Ensure the run directory exists. self.run_dir.mkdir(parents=True, exist_ok=True) # Pick a random prompt. plan_prompt = find_plan_prompt("4dc34d55-0d0d-4e9d-92f4-23765f49dd29") plan_file = PlanFile.create(plan_prompt) plan_file.save(self.output().path) class AssumptionsTask(PlanTask): """ Make assumptions about the plan. Depends on: - SetupTask (for the initial plan) """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): return SetupTask(run_id=self.run_id) def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.DISTILL_ASSUMPTIONS_RAW))) def run(self): logger.info("Making assumptions about the plan...") # Read inputs from required tasks. with self.input().open("r") as f: plan_prompt = f.read() # I'm currently debugging the speedvsdetail parameter. When I'm done I can remove it. # Verifying that the speedvsdetail parameter is set correctly. logger.info(f"AssumptionsTask.speedvsdetail: {self.speedvsdetail}") if self.speedvsdetail == SpeedVsDetailEnum.FAST_BUT_SKIP_DETAILS: logger.info("AssumptionsTask: We are in FAST_BUT_SKIP_DETAILS mode.") else: logger.info("AssumptionsTask: We are in another mode") llm = get_llm(self.llm_model) # Define callback functions. def phase1_post_callback(make_assumptions: MakeAssumptions) -> None: raw_path = self.run_dir / FilenameEnum.MAKE_ASSUMPTIONS_RAW.value cleaned_path = self.run_dir / FilenameEnum.MAKE_ASSUMPTIONS.value make_assumptions.save_raw(str(raw_path)) make_assumptions.save_assumptions(str(cleaned_path)) # Execute orchestrator = AssumptionOrchestrator() orchestrator.phase1_post_callback = phase1_post_callback orchestrator.execute(llm, plan_prompt) # Write the assumptions to the output file. file_path = self.run_dir / FilenameEnum.DISTILL_ASSUMPTIONS_RAW.value orchestrator.distill_assumptions.save_raw(str(file_path)) class PreProjectAssessmentTask(PlanTask): llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): return SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail) def output(self): return { 'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT_RAW))), 'clean': luigi.LocalTarget(str(self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT))) } def run(self): logger.info("Conducting pre-project assessment...") # Read the plan prompt from the SetupTask's output. with self.input().open("r") as f: plan_prompt = f.read() # Build the query. query = f"Initial plan: {plan_prompt}\n\n" # Get an instance of your LLM. llm = get_llm(self.llm_model) # Execute the pre-project assessment. pre_project_assessment = PreProjectAssessment.execute(llm, query) # Save raw output. raw_path = self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT_RAW) pre_project_assessment.save_raw(str(raw_path)) # Save cleaned pre-project assessment. clean_path = self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT) pre_project_assessment.save_preproject_assessment(str(clean_path)) class ProjectPlanTask(PlanTask): llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): """ This task depends on: - SetupTask: produces the plan prompt (001-plan.txt) - AssumptionsTask: produces the distilled assumptions (003-distill_assumptions.json) - PreProjectAssessmentTask: produces the pre‑project assessment files """ return { 'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail), 'assumptions': AssumptionsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'preproject': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model) } def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.PROJECT_PLAN))) def run(self): logger.info("Creating plan...") # Read the plan prompt from SetupTask's output. setup_target = self.input()['setup'] with setup_target.open("r") as f: plan_prompt = f.read() # Read assumptions from the distilled assumptions output. assumptions_file = self.input()['assumptions'] with assumptions_file.open("r") as f: assumption_list = json.load(f) # Read the pre-project assessment from its file. pre_project_assessment_file = self.input()['preproject']['clean'] with pre_project_assessment_file.open("r") as f: pre_project_assessment_dict = json.load(f) # Build the query. query = ( f"Initial plan: {plan_prompt}\n\n" f"Assumptions:\n{format_json_for_use_in_query(assumption_list)}\n\n" f"Pre-project assessment:\n{format_json_for_use_in_query(pre_project_assessment_dict)}" ) # Get an LLM instance. llm = get_llm(self.llm_model) # Execute the plan creation. create_project_plan = CreateProjectPlan.execute(llm, query) output_path = self.output().path create_project_plan.save(output_path) logger.info("Project plan created and saved to %s", output_path) class SWOTAnalysisTask(PlanTask): llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): return { 'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail), 'assumptions': AssumptionsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'preproject': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model) } def output(self): return { 'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.SWOT_RAW))), 'markdown': luigi.LocalTarget(str(self.file_path(FilenameEnum.SWOT_MARKDOWN))) } def run(self): logger.info("SWOTAnalysisTask. Loading files...") # 1. Read the plan prompt from SetupTask. with self.input()['setup'].open("r") as f: plan_prompt = f.read() # 2. Read the distilled assumptions from AssumptionsTask. with self.input()['assumptions'].open("r") as f: assumption_list = json.load(f) # 3. Read the pre-project assessment from PreProjectAssessmentTask. with self.input()['preproject']['clean'].open("r") as f: pre_project_assessment_dict = json.load(f) # 4. Read the project plan from ProjectPlanTask. with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) logger.info("SWOTAnalysisTask. All files are now ready. Performing analysis...") # Build the query for SWOT analysis. query = ( f"Initial plan: {plan_prompt}\n\n" f"Assumptions:\n{format_json_for_use_in_query(assumption_list)}\n\n" f"Pre-project assessment:\n{format_json_for_use_in_query(pre_project_assessment_dict)}\n\n" f"Project plan:\n{format_json_for_use_in_query(project_plan_dict)}" ) # Create LLM instances for SWOT analysis. llm = get_llm(self.llm_model) # Execute the SWOT analysis. try: swot_analysis = SWOTAnalysis.execute(llm, query) except Exception as e: logger.error("SWOT analysis failed: %s", e) raise # Convert the SWOT analysis to a dict and markdown. swot_raw_dict = swot_analysis.to_dict() swot_markdown = swot_analysis.to_markdown(include_metadata=False) # Write the raw SWOT JSON. with self.output()['raw'].open("w") as f: json.dump(swot_raw_dict, f, indent=2) # Write the SWOT analysis as Markdown. with self.output()['markdown'].open("w") as f: f.write(swot_markdown) logger.info("SWOT analysis complete.") class ExpertReviewTask(PlanTask): """ Finds experts to review the SWOT analysis and have them provide criticism. Depends on: - SetupTask (for the initial plan) - PreProjectAssessmentTask (for the pre‑project assessment) - ProjectPlanTask (for the project plan) - SWOTAnalysisTask (for the SWOT analysis) Produces: - Raw experts file (006-experts_raw.json) - Cleaned experts file (007-experts.json) - For each expert, a raw expert criticism file (008-XX-expert_criticism_raw.json) [side effects via callbacks] - Final expert criticism markdown (009-expert_criticism.md) """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): return { 'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail), 'preproject': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'swot_analysis': SWOTAnalysisTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model) } def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.EXPERT_CRITICISM_MARKDOWN))) def run(self): logger.info("Finding experts to review the SWOT analysis, and having them provide criticism...") # Read inputs from required tasks. with self.input()['setup'].open("r") as f: plan_prompt = f.read() with self.input()['preproject']['clean'].open("r") as f: pre_project_assessment_dict = json.load(f) with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) with self.input()['swot_analysis']['markdown'].open("r") as f: swot_markdown = f.read() # Build the query. query = ( f"Initial plan: {plan_prompt}\n\n" f"Pre-project assessment:\n{format_json_for_use_in_query(pre_project_assessment_dict)}\n\n" f"Project plan:\n{format_json_for_use_in_query(project_plan_dict)}\n\n" f"SWOT Analysis:\n{swot_markdown}" ) llm = get_llm(self.llm_model) # Define callback functions. def phase1_post_callback(expert_finder: ExpertFinder) -> None: raw_path = self.run_dir / FilenameEnum.EXPERTS_RAW.value cleaned_path = self.run_dir / FilenameEnum.EXPERTS_CLEAN.value expert_finder.save_raw(str(raw_path)) expert_finder.save_cleanedup(str(cleaned_path)) def phase2_post_callback(expert_criticism: ExpertCriticism, expert_index: int) -> None: file_path = self.run_dir / FilenameEnum.EXPERT_CRITICISM_RAW_TEMPLATE.format(expert_index + 1) expert_criticism.save_raw(str(file_path)) # Execute the expert orchestration. expert_orchestrator = ExpertOrchestrator() # IDEA: max_expert_count. don't truncate to 2 experts. Interview them all in production mode. expert_orchestrator.phase1_post_callback = phase1_post_callback expert_orchestrator.phase2_post_callback = phase2_post_callback expert_orchestrator.execute(llm, query) # Write final expert criticism markdown. expert_criticism_markdown_file = self.file_path(FilenameEnum.EXPERT_CRITICISM_MARKDOWN) with expert_criticism_markdown_file.open("w") as f: f.write(expert_orchestrator.to_markdown()) class CreateWBSLevel1Task(PlanTask): """ Creates the Work Breakdown Structure (WBS) Level 1. Depends on: - ProjectPlanTask: provides the project plan as JSON. Produces: - Raw WBS Level 1 output file (xxx-wbs_level1_raw.json) - Cleaned up WBS Level 1 file (xxx-wbs_level1.json) """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): return { 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model) } def output(self): return { 'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL1_RAW))), 'clean': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL1))) } def run(self): logger.info("Creating Work Breakdown Structure (WBS) Level 1...") # Read the project plan JSON from the dependency. with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) # Build the query using the project plan. query = format_json_for_use_in_query(project_plan_dict) # Get an LLM instance. llm = get_llm(self.llm_model) # Execute the WBS Level 1 creation. create_wbs_level1 = CreateWBSLevel1.execute(llm, query) # Save the raw output. wbs_level1_raw_dict = create_wbs_level1.raw_response_dict() with self.output()['raw'].open("w") as f: json.dump(wbs_level1_raw_dict, f, indent=2) # Save the cleaned up result. wbs_level1_result_json = create_wbs_level1.cleanedup_dict() with self.output()['clean'].open("w") as f: json.dump(wbs_level1_result_json, f, indent=2) logger.info("WBS Level 1 created successfully.") class CreateWBSLevel2Task(PlanTask): """ Creates the Work Breakdown Structure (WBS) Level 2. Depends on: - ProjectPlanTask: provides the project plan as JSON. - CreateWBSLevel1Task: provides the cleaned WBS Level 1 result. Produces: - Raw WBS Level 2 output (007-wbs_level2_raw.json) - Cleaned WBS Level 2 output (008-wbs_level2.json) """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): return { 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_level1': CreateWBSLevel1Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model) } def output(self): return { 'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL2_RAW))), 'clean': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL2))) } def run(self): logger.info("Creating Work Breakdown Structure (WBS) Level 2...") # Read the project plan from the ProjectPlanTask output. with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) # Read the cleaned WBS Level 1 result from the CreateWBSLevel1Task output. # Here we assume the cleaned output is under the 'clean' key. with self.input()['wbs_level1']['clean'].open("r") as f: wbs_level1_result_json = json.load(f) # Build the query using CreateWBSLevel2's format_query method. query = CreateWBSLevel2.format_query(project_plan_dict, wbs_level1_result_json) # Get an LLM instance. llm = get_llm(self.llm_model) # Execute the WBS Level 2 creation. create_wbs_level2 = CreateWBSLevel2.execute(llm, query) # Retrieve and write the raw output. wbs_level2_raw_dict = create_wbs_level2.raw_response_dict() with self.output()['raw'].open("w") as f: json.dump(wbs_level2_raw_dict, f, indent=2) # Retrieve and write the cleaned output (e.g. major phases with subtasks). with self.output()['clean'].open("w") as f: json.dump(create_wbs_level2.major_phases_with_subtasks, f, indent=2) logger.info("WBS Level 2 created successfully.") class WBSProjectLevel1AndLevel2Task(PlanTask): """ Create a WBS project from the WBS Level 1 and Level 2 JSON files. It depends on: - CreateWBSLevel1Task: providing the cleaned WBS Level 1 JSON. - CreateWBSLevel2Task: providing the major phases with subtasks and the task UUIDs. """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_PROJECT_LEVEL1_AND_LEVEL2))) def requires(self): return { 'wbs_level1': CreateWBSLevel1Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_level2': CreateWBSLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), } def run(self): wbs_level1_path = self.input()['wbs_level1']['clean'].path wbs_level2_path = self.input()['wbs_level2']['clean'].path wbs_project = WBSPopulate.project_from_level1_json(wbs_level1_path) WBSPopulate.extend_project_with_level2_json(wbs_project, wbs_level2_path) json_representation = json.dumps(wbs_project.to_dict(), indent=2) with self.output().open("w") as f: f.write(json_representation) class CreatePitchTask(PlanTask): """ Create a the pitch that explains the project plan, from multiple perspectives. This task depends on: - ProjectPlanTask: provides the project plan JSON. - WBSProjectLevel1AndLevel2Task: containing the top level of the project plan. The resulting pitch JSON is written to the file specified by FilenameEnum.PITCH. """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.PITCH))) def requires(self): return { 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_project': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), } def run(self): logger.info("Creating pitch...") # Read the project plan JSON. with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) wbs_project_path = self.input()['wbs_project'].path with open(wbs_project_path, "r") as f: wbs_project_dict = json.load(f) wbs_project = WBSProject.from_dict(wbs_project_dict) wbs_project_json = wbs_project.to_dict() # Build the query query = ( f"The project plan:\n{format_json_for_use_in_query(project_plan_dict)}\n\n" f"Work Breakdown Structure:\n{format_json_for_use_in_query(wbs_project_json)}" ) # Get the LLM instance. llm = get_llm(self.llm_model) # Execute the pitch creation. create_pitch = CreatePitch.execute(llm, query) pitch_dict = create_pitch.raw_response_dict() # Write the resulting pitch JSON to the output file. with self.output().open("w") as f: json.dump(pitch_dict, f, indent=2) logger.info("Pitch created and written to %s", self.output().path) class IdentifyTaskDependenciesTask(PlanTask): """ This task identifies the dependencies between WBS tasks. It depends on: - ProjectPlanTask: provides the project plan JSON. - CreateWBSLevel2Task: provides the major phases with subtasks. The raw JSON response is written to the file specified by FilenameEnum.TASK_DEPENDENCIES_RAW. """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.TASK_DEPENDENCIES_RAW))) def requires(self): return { 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_level2': CreateWBSLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model) } def run(self): logger.info("Identifying task dependencies...") # Read the project plan JSON. with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) # Read the major phases with subtasks from WBS Level 2 output. with self.input()['wbs_level2']['clean'].open("r") as f: major_phases_with_subtasks = json.load(f) # Build the query using the provided format method. query = IdentifyWBSTaskDependencies.format_query(project_plan_dict, major_phases_with_subtasks) # Get the LLM instance. llm = get_llm(self.llm_model) # Execute the dependency identification. identify_dependencies = IdentifyWBSTaskDependencies.execute(llm, query) dependencies_raw_dict = identify_dependencies.raw_response_dict() # Write the raw dependencies JSON to the output file. with self.output().open("w") as f: json.dump(dependencies_raw_dict, f, indent=2) logger.info("Task dependencies identified and written to %s", self.output().path) class EstimateTaskDurationsTask(PlanTask): """ This task estimates durations for WBS tasks in chunks. It depends on: - ProjectPlanTask: providing the project plan JSON. - WBSProjectLevel1AndLevel2Task: providing the major phases with subtasks and the task UUIDs. For each chunk of 3 task IDs, a raw JSON file (e.g. "011-1-task_durations_raw.json") is written, and an aggregated JSON file (defined by FilenameEnum.TASK_DURATIONS) is produced. IDEA: 1st estimate the Tasks that have zero children. 2nd estimate tasks that have children where all children have been estimated. repeat until all tasks have been estimated. """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def output(self): # The primary output is the aggregated task durations JSON. return luigi.LocalTarget(str(self.file_path(FilenameEnum.TASK_DURATIONS))) def requires(self): return { 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_project': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), } def run(self): logger.info("Estimating task durations...") # Load the project plan JSON. with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) with self.input()['wbs_project'].open("r") as f: wbs_project_dict = json.load(f) wbs_project = WBSProject.from_dict(wbs_project_dict) # json'ish representation of the major phases in the WBS, and their subtasks. root_task = wbs_project.root_task major_tasks = [child.to_dict() for child in root_task.task_children] major_phases_with_subtasks = major_tasks # Don't include uuid of the root task. It's the child tasks that are of interest to estimate. decompose_task_id_list = [] for task in wbs_project.root_task.task_children: decompose_task_id_list.extend(task.task_ids()) logger.info(f"There are {len(decompose_task_id_list)} tasks to be estimated.") # Split the task IDs into chunks of 3. task_ids_chunks = [decompose_task_id_list[i:i + 3] for i in range(0, len(decompose_task_id_list), 3)] # In production mode, all chunks are processed. # In developer mode, truncate to only 2 chunks for fast turnaround cycle. Otherwise LOTS of tasks are to be estimated. logger.info(f"EstimateTaskDurationsTask.speedvsdetail: {self.speedvsdetail}") if self.speedvsdetail == SpeedVsDetailEnum.FAST_BUT_SKIP_DETAILS: logger.info("FAST_BUT_SKIP_DETAILS mode, truncating to 2 chunks for testing.") task_ids_chunks = task_ids_chunks[:2] else: logger.info("Processing all chunks.") # Get the LLM instance. llm = get_llm(self.llm_model) # Process each chunk. accumulated_task_duration_list = [] for index, task_ids_chunk in enumerate(task_ids_chunks, start=1): logger.info("Processing chunk %d of %d", index, len(task_ids_chunks)) query = EstimateWBSTaskDurations.format_query( project_plan_dict, major_phases_with_subtasks, task_ids_chunk ) estimate_durations = EstimateWBSTaskDurations.execute(llm, query) durations_raw_dict = estimate_durations.raw_response_dict() # Write the raw JSON for this chunk. filename = FilenameEnum.TASK_DURATIONS_RAW_TEMPLATE.format(index) raw_chunk_path = self.run_dir / filename with open(raw_chunk_path, "w") as f: json.dump(durations_raw_dict, f, indent=2) accumulated_task_duration_list.extend(durations_raw_dict.get('task_details', [])) # Write the aggregated task durations. aggregated_path = self.file_path(FilenameEnum.TASK_DURATIONS) with open(aggregated_path, "w") as f: json.dump(accumulated_task_duration_list, f, indent=2) logger.info("Task durations estimated and aggregated results written to %s", aggregated_path) class CreateWBSLevel3Task(PlanTask): """ This task creates the Work Breakdown Structure (WBS) Level 3, by decomposing tasks from Level 2 into subtasks. It depends on: - ProjectPlanTask: provides the project plan JSON. - WBSProjectLevel1AndLevel2Task: provides the major phases with subtasks and the task UUIDs. - EstimateTaskDurationsTask: provides the aggregated task durations (task_duration_list). For each task without any subtasks, a query is built and executed using the LLM. The raw JSON result for each task is written to a file using the template from FilenameEnum. Finally, all individual results are accumulated and written as an aggregated JSON file. """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL3))) def requires(self): return { 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_project': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'task_durations': EstimateTaskDurationsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model) } def run(self): logger.info("Creating Work Breakdown Structure (WBS) Level 3...") # Load the project plan JSON. with self.input()['project_plan'].open("r") as f: project_plan_dict = json.load(f) with self.input()['wbs_project'].open("r") as f: wbs_project_dict = json.load(f) wbs_project = WBSProject.from_dict(wbs_project_dict) # Load the estimated task durations. task_duration_list_path = self.input()['task_durations'].path WBSPopulate.extend_project_with_durations_json(wbs_project, task_duration_list_path) # for each task in the wbs_project, find the task that has no children tasks_with_no_children = [] def visit_task(task): if len(task.task_children) == 0: tasks_with_no_children.append(task) else: for child in task.task_children: visit_task(child) visit_task(wbs_project.root_task) # for each task with no children, extract the task_id decompose_task_id_list = [] for task in tasks_with_no_children: decompose_task_id_list.append(task.id) logger.info("There are %d tasks to be decomposed.", len(decompose_task_id_list)) # In production mode, all chunks are processed. # In developer mode, truncate to only 2 chunks for fast turnaround cycle. Otherwise LOTS of tasks are to be decomposed. logger.info(f"CreateWBSLevel3Task.speedvsdetail: {self.speedvsdetail}") if self.speedvsdetail == SpeedVsDetailEnum.FAST_BUT_SKIP_DETAILS: logger.info("FAST_BUT_SKIP_DETAILS mode, truncating to 2 chunks for testing.") decompose_task_id_list = decompose_task_id_list[:2] else: logger.info("Processing all chunks.") # Get an LLM instance. llm = get_llm(self.llm_model) project_plan_str = format_json_for_use_in_query(project_plan_dict) wbs_project_str = format_json_for_use_in_query(wbs_project.to_dict()) # Loop over each task ID. wbs_level3_result_accumulated = [] total_tasks = len(decompose_task_id_list) for index, task_id in enumerate(decompose_task_id_list, start=1): logger.info("Decomposing task %d of %d", index, total_tasks) query = ( f"The project plan:\n{project_plan_str}\n\n" f"Work breakdown structure:\n{wbs_project_str}\n\n" f"Only decompose this task:\n\"{task_id}\"" ) create_wbs_level3 = CreateWBSLevel3.execute(llm, query, task_id) wbs_level3_raw_dict = create_wbs_level3.raw_response_dict() # Write the raw JSON for this task using the FilenameEnum template. raw_filename = FilenameEnum.WBS_LEVEL3_RAW_TEMPLATE.value.format(index) raw_chunk_path = self.run_dir / raw_filename with open(raw_chunk_path, 'w') as f: json.dump(wbs_level3_raw_dict, f, indent=2) # Accumulate the decomposed tasks. wbs_level3_result_accumulated.extend(create_wbs_level3.tasks) # Write the aggregated WBS Level 3 result. aggregated_path = self.file_path(FilenameEnum.WBS_LEVEL3) with open(aggregated_path, 'w') as f: json.dump(wbs_level3_result_accumulated, f, indent=2) logger.info("WBS Level 3 created and aggregated results written to %s", aggregated_path) class WBSProjectLevel1AndLevel2AndLevel3Task(PlanTask): """ Create a WBS project from the WBS Level 1 and Level 2 and Level 3 JSON files. It depends on: - WBSProjectLevel1AndLevel2Task: providing the major phases with subtasks and the task UUIDs. - CreateWBSLevel3Task: providing the decomposed tasks. """ llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def output(self): return { 'full': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_PROJECT_LEVEL1_AND_LEVEL2_AND_LEVEL3_FULL))), 'csv': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_PROJECT_LEVEL1_AND_LEVEL2_AND_LEVEL3_CSV))) } def requires(self): return { 'wbs_project12': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_level3': CreateWBSLevel3Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), } def run(self): wbs_project_path = self.input()['wbs_project12'].path with open(wbs_project_path, "r") as f: wbs_project_dict = json.load(f) wbs_project = WBSProject.from_dict(wbs_project_dict) wbs_level3_path = self.input()['wbs_level3'].path WBSPopulate.extend_project_with_decomposed_tasks_json(wbs_project, wbs_level3_path) json_representation = json.dumps(wbs_project.to_dict(), indent=2) with self.output()['full'].open("w") as f: f.write(json_representation) csv_representation = wbs_project.to_csv_string() with self.output()['csv'].open("w") as f: f.write(csv_representation) class FullPlanPipeline(PlanTask): llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL) def requires(self): return { 'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail), 'assumptions': AssumptionsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'pre_project_assessment': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'swot_analysis': SWOTAnalysisTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'expert_review': ExpertReviewTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_level1': CreateWBSLevel1Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_level2': CreateWBSLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_project12': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'pitch': CreatePitchTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'dependencies': IdentifyTaskDependenciesTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'durations': EstimateTaskDurationsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_level3': CreateWBSLevel3Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), 'wbs_project123': WBSProjectLevel1AndLevel2AndLevel3Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model), } def output(self): return luigi.LocalTarget(str(self.file_path(FilenameEnum.PIPELINE_COMPLETE))) def run(self): with self.output().open("w") as f: f.write("Full pipeline executed successfully.\n") if __name__ == '__main__': import colorlog import sys import os run_id = datetime.now().strftime("%Y%m%d_%H%M%S") # specify a hardcoded, and it will resume work on that directory # run_id = "20250205_141025" # if env contains "RUN_ID" then use that as the run_id if "RUN_ID" in os.environ: run_id = os.environ["RUN_ID"] run_dir = os.path.join("run", run_id) os.makedirs(run_dir, exist_ok=True) logger = logging.getLogger() logger.setLevel(logging.DEBUG) # Log messages on the console colored_formatter = colorlog.ColoredFormatter( "%(log_color)s%(asctime)s - %(name)s - %(levelname)s - %(message)s", datefmt='%Y-%m-%d %H:%M:%S', log_colors={ 'DEBUG': 'cyan', 'INFO': 'green', 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'red,bg_white', } ) stdout_handler = colorlog.StreamHandler(stream=sys.stdout) stdout_handler.setFormatter(colored_formatter) stdout_handler.setLevel(logging.DEBUG) logger.addHandler(stdout_handler) # Capture logs messages to 'run/yyyymmdd_hhmmss/log.txt' file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') log_file = os.path.join(run_dir, "log.txt") file_handler = logging.FileHandler(log_file, mode='w') file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(file_formatter) logger.addHandler(file_handler) logger.info(f"run_id: {run_id}") # Example logging messages if False: logger.debug("This is a debug message.") logger.info("This is an info message.") logger.warning("This is a warning message.") logger.error("This is an error message.") logger.critical("This is a critical message.") model = DEFAULT_LLM_MODEL # works model = "openrouter-paid-gemini-2.0-flash-001" # works # model = "openrouter-paid-openai-gpt-4o-mini" # often fails, I think it's not good at structured output if "LLM_MODEL" in os.environ: model = os.environ["LLM_MODEL"] logger.info(f"LLM model: {model}") speedvsdetail = SpeedVsDetailEnum.ALL_DETAILS_BUT_SLOW if "SPEED_VS_DETAIL" in os.environ: speedvsdetail_value = os.environ["SPEED_VS_DETAIL"] found = False for e in SpeedVsDetailEnum: if e.value == speedvsdetail_value: speedvsdetail = e found = True logger.info(f"Setting Speed vs Detail: {speedvsdetail}") break if not found: logger.error(f"Invalid value for SPEED_VS_DETAIL: {speedvsdetail_value}") logger.info(f"Speed vs Detail: {speedvsdetail}") task = FullPlanPipeline(speedvsdetail=speedvsdetail, llm_model=model) if run_id is not None: task.run_id = run_id # logger.info("Environment variables Luigi:\n" + get_env_as_string() + "\n\n\n") luigi.build([task], local_scheduler=True, workers=1)