Spaces:
Sleeping
Sleeping
File size: 14,686 Bytes
6ab97fb 832b09f 7dd08ed 1800168 7dd08ed 832b09f 7dd08ed 7a33edb 7dd08ed 832b09f bcc6c11 7a33edb 7dd08ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import ee
import os
import json
from google.oauth2 import service_account
from typing import Dict
from datetime import datetime, timedelta
from geopy.distance import geodesic
import requests
import pandas as pd
import folium
import requests
from langchain_core.tools import tool
from langgraph.prebuilt import create_react_agent
from typing_extensions import TypedDict, Literal, Annotated
from typing import Optional
from collections import Counter
from langgraph.graph import StateGraph, END
from typing import TypedDict, Annotated
import operator
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage, ToolMessage, AIMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chat_models import init_chat_model
from langchain.schema import HumanMessage
from langchain.tools import tool
import gradio as gr
# Load JSON string from Hugging Face secret (as env variable)
SERVICE_KEY_JSON = os.environ.get("GEE_SERVICE_KEY")
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
FIRMS_API_KEY = os.getenv("FIRMS_API_KEY")
OPENCAGE_API_KEY = os.getenv("OPENCAGE_API_KEY")
if SERVICE_KEY_JSON is None:
raise RuntimeError("Missing Earth Engine service account key in environment.")
# Parse the JSON and create credentials
SERVICE_KEY_DICT = json.loads(SERVICE_KEY_JSON)
credentials = service_account.Credentials.from_service_account_info(
SERVICE_KEY_DICT,
scopes=['https://www.googleapis.com/auth/cloud-platform']
)
# Initialize EE
ee.Initialize(credentials=credentials)
@tool
def get_fire_risk_map(place: str, opencage_key: str, firms_key: str, min_brightness: int = 300, min_confidence: int = 60) -> Optional[str]:
"""
Returns an HTML string of a folium map showing fire locations, nearest water bodies, and fire stations.
Args:
place: Name of the place to fetch the bounding box for.
opencage_key: opencage API key.
firms_key: FIRMS API key.
min_brightness (int, optional): Minimum fire brightness to filter on (e.g., 300). Defaults to 300.
min_confidence (int, optional): Minimum confidence level (0-100) to filter fire data. Defaults to 60.
Returns:
Returns an HTML string of a folium map showing fire locations, nearest water bodies, and fire stations.
"""
try:
opencage_key = os.environ["OPENCAGE_API_KEY"]
firms_key = os.environ["FIRMS_API_KEY"]
# Step 1: Get bounding box from OpenCage
url = f"https://api.opencagedata.com/geocode/v1/json?q={place}&key={opencage_key}"
resp = requests.get(url)
resp.raise_for_status()
data = resp.json()
bounds = data['results'][0]['bounds']
bbox = {
'north': bounds['northeast']['lat'],
'south': bounds['southwest']['lat'],
'east': bounds['northeast']['lng'],
'west': bounds['southwest']['lng']
}
bbox_str = f"{bbox['west']},{bbox['south']},{bbox['east']},{bbox['north']}"
# Step 2: Get FIRMS fire data
source = 'MODIS_NRT'
url = f'https://firms.modaps.eosdis.nasa.gov/api/area/csv/{firms_key}/{source}/{bbox_str}/3'
df = pd.read_csv(url)
now = datetime.utcnow()
df['acq_datetime'] = pd.to_datetime(
df['acq_date'] + ' ' + df['acq_time'].astype(str).str.zfill(4),
format="%Y-%m-%d %H%M"
)
df_fires_filtered = df[
(df['brightness'] >= min_brightness) &
(df['confidence'] > min_confidence) &
(df['acq_datetime'] > (now - timedelta(hours=24)))
].dropna(subset=['latitude', 'longitude']).reset_index(drop=True)
if df_fires_filtered.empty:
return "<b>No significant fire activity detected in the past 24 hours for the specified location.</b>"
# Step 3: Water bodies (Earth Engine)
west, south, east, north = map(float, bbox_str.split(','))
geom = ee.Geometry.BBox(west, south, east, north)
water = ee.Image('JRC/GSW1_4/GlobalSurfaceWater').select('occurrence')
water_mask = water.gt(50).selfMask()
water_clipped = water_mask.clip(geom)
sampled_points = water_clipped.stratifiedSample(
numPoints=500,
classBand='occurrence',
region=geom,
scale=500,
geometries=True,
seed=42
).getInfo()
water_points = [
{
'latitude': f['geometry']['coordinates'][1],
'longitude': f['geometry']['coordinates'][0]
}
for f in sampled_points['features']
]
df_water = pd.DataFrame(water_points).dropna().reset_index(drop=True)
# Step 4: Compute nearest water body
def get_nearest_water(fire_lat, fire_lon):
fire_point = (fire_lat, fire_lon)
min_dist = float('inf')
nearest = None
for _, row in df_water.iterrows():
dist = geodesic(fire_point, (row['latitude'], row['longitude'])).km
if dist < min_dist:
min_dist = dist
nearest = row
return pd.Series({
'nearest_water_lat': nearest['latitude'],
'nearest_water_lon': nearest['longitude'],
'distance_km': min_dist
})
nearest_water = df_fires_filtered.apply(
lambda r: get_nearest_water(r['latitude'], r['longitude']), axis=1)
# Step 5: Fire stations using Overpass API
overpass_query = f"""
[out:json][timeout:25];
(
node["amenity"="fire_station"]({south},{west},{north},{east});
);
out body;
"""
res = requests.get("http://overpass-api.de/api/interpreter", params={"data": overpass_query})
data = res.json()
stations = [
{
'name': e.get('tags', {}).get('name', 'Unnamed Station'),
'lat': e['lat'],
'lon': e['lon']
}
for e in data.get('elements', []) if 'lat' in e and 'lon' in e
]
df_stations = pd.DataFrame(stations).dropna()
def get_nearest_station(fire_lat, fire_lon):
fire_point = (fire_lat, fire_lon)
min_dist = float('inf')
nearest = None
for _, row in df_stations.iterrows():
dist = geodesic(fire_point, (row['lat'], row['lon'])).km
if dist < min_dist:
min_dist = dist
nearest = row
return pd.Series({
'nearest_station_name': nearest['name'],
'nearest_station_lat': nearest['lat'],
'nearest_station_lon': nearest['lon'],
'station_distance_km': min_dist
})
nearest_station = df_fires_filtered.apply(
lambda r: get_nearest_station(r['latitude'], r['longitude']), axis=1)
# Final dataframe
df_final = pd.concat([df_fires_filtered, nearest_water, nearest_station], axis=1)
# Step 6: Create a folium map
center_lat = (bbox["north"] + bbox["south"]) / 2
center_lon = (bbox["east"] + bbox["west"]) / 2
m = folium.Map(location=[center_lat, center_lon], zoom_start=6)
for _, row in df_final.iterrows():
fire_loc = [row['latitude'], row['longitude']]
water_loc = [row['nearest_water_lat'], row['nearest_water_lon']]
station_loc = [row['nearest_station_lat'], row['nearest_station_lon']]
# π₯ 1. Uncertainty Zone (large faint circle) FIRST
folium.Circle(
location=fire_loc,
radius=500, # 3 km
color='orange',
fill=True,
fill_opacity=0.2,
popup="β οΈ Possible spread zone (~3 km radius)",
).add_to(m)
# π΄ 2. Fire point (small red circle) SECOND
folium.CircleMarker(
location=fire_loc,
radius=6,
color='red',
fill=True,
fill_color='red',
popup=f"π₯ Brightness: {row['brightness']}, Confidence: {row['confidence']}, DateTime: {row['acq_datetime']} Latitude: {row['latitude']:.3f}, Longitude: {row['longitude']:.3f}",
).add_to(m)
# π§ 3. Nearest water point
folium.Marker(
location=water_loc,
icon=folium.Icon(color='blue', icon='tint', prefix='fa'),
popup=f"π§ Nearest Water\nDistance: {row['distance_km']:.2f} km\nLat: {row['nearest_water_lat']:.3f}\nLon: {row['nearest_water_lon']:.3f}",
).add_to(m)
# π’ 4. Line between fire and water
folium.PolyLine(
locations=[fire_loc, water_loc],
color='green',
weight=2,
).add_to(m)
# π 5. Nearest fire station (NEW)
folium.Marker(
location=station_loc,
icon=folium.Icon(color='darkred', icon='fire-extinguisher', prefix='fa'),
popup=f"π Nearest Fire Station\nDistance: {row['station_distance_km']:.2f} km\nLat: {row['nearest_station_lat']:.3f}\nLon: {row['nearest_station_lon']:.3f}",
).add_to(m)
# π§― 6. Line between fire and station (NEW)
folium.PolyLine(
locations=[fire_loc, station_loc],
color='purple',
weight=2,
dash_array='5,10' # dashed line
).add_to(m)
return m._repr_html_()
except Exception as e:
return f"<b>Error generating fire risk map:</b> {str(e)}"
class AgentState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
class Agent:
def __init__(self, model, tools, system=""):
self.system = system
graph = StateGraph(AgentState)
graph.add_node("llm", self.call_mistral_ai)
graph.add_node("action", self.take_action)
graph.add_node("final", self.final_answer)
graph.add_conditional_edges(
"llm",
self.exists_action,
{True: "action", False: END}
)
graph.add_edge("action", "final") # π
graph.add_edge("final", END) # π
graph.set_entry_point("llm")
self.graph = graph.compile()
self.tools = {t.name: t for t in tools}
self.model = model.bind_tools(tools)
def exists_action(self, state: AgentState):
result = state['messages'][-1]
return len(result.tool_calls) > 0
def call_mistral_ai(self, state: AgentState):
messages = state['messages']
if self.system:
messages = [SystemMessage(content=self.system)] + messages
message = self.model.invoke(messages)
return {'messages': [message]}
def take_action(self, state: AgentState):
tool_calls = state['messages'][-1].tool_calls
results = []
for t in tool_calls:
print(f"Calling: {t}")
if not t['name'] in self.tools: # check for bad tool name from LLM
print("\n ....bad tool name....")
result = "bad tool name, retry" # instruct LLM to retry if bad
else:
result = self.tools[t['name']].invoke(t['args'])
results.append(ToolMessage(tool_call_id=t['id'], name=t['name'], content=str(result)))
return {'messages': results}
def final_answer(self, state: AgentState):
"""Return the final tool output cleanly."""
return {"messages": [AIMessage(content=state['messages'][-1].content.strip())]}
prompt = """ You are a Wildfire Detection Assistant.
When users ask about fire spots, wildfires, or fire mapping in any region,
use the firespot_summary function to analyze the area and generate a fire map or status update.
"""
model = init_chat_model("mistral-large-latest", model_provider="mistralai")
abot = Agent(model, [get_fire_risk_map], system=prompt)
def process_prompt(prompt):
messages = [HumanMessage(content=prompt)]
result = abot.graph.invoke({"messages": messages})
html_map = result['messages'][-1].content # assuming tool returns HTML string
return html_map
# Clear function
def clear_all():
return "", "" # Reset both prompt and HTML output
# Build Gradio UI
with gr.Blocks(title="FireLink - Wildfire Intelligence Tool") as demo:
gr.Markdown("## π₯ FireLink")
gr.Markdown("**Visualize recent wildfire activity and nearby response resourcesβpowered by satellite data, water occurrence maps, and open geospatial infrastructure.**"
)
gr.Markdown("**Ask about fire risks in a region and view the results as an interactive map.**")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Input Prompt")
prompt_box = gr.Textbox(
label="Enter your request",
placeholder="e.g., Show fires in California with brightness > 300 and confidence > 80",
lines=4
)
submit_btn = gr.Button("Generate Map")
clear_btn = gr.Button("Clear", variant="secondary") # Added Clear button
with gr.Column(scale=2):
gr.Markdown("### πΊοΈ Fire Risk Map")
result_html = gr.HTML(label="Map Output")
# Button behavior
submit_btn.click(fn=process_prompt, inputs=prompt_box, outputs=result_html)
clear_btn.click(fn=clear_all, outputs=[prompt_box, result_html]) # Hook clear button
with gr.Accordion("βΉοΈ Notes & Disclaimers (click here)", open=False):
gr.Markdown("""
- π₯ **Fire data** is sourced from NASA FIRMS and represents **near real-time satellite detections** from MODIS and VIIRS sensors.
- There may be a **delay of up to 3 hours** depending on satellite pass and processing time.
- π§ **Water bodies** are sampled from the **JRC Global Surface Water dataset**, and represent **historically persistent** water locations (occurrence > 50%).
- This is **not guaranteed to reflect current water availability** or seasonal changes.
- π **Fire station locations** are retrieved from **OpenStreetMap** via Overpass API and may vary in completeness or accuracy.
- π Map pins and routes are intended to **assist awareness**, not for operational or emergency decision-making.
- π Data is retrieved live; occasional delays or errors may occur if external APIs (e.g., FIRMS, OpenCage, Overpass) are temporarily unavailable.
""")
# Launch the app
demo.launch(share = True) |