Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,6 @@ client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3")
|
|
9 |
# Load model Named Entity Recognition (NER)
|
10 |
ner_pipeline = pipeline("ner", model="d4data/biomedical-ner-all")
|
11 |
|
12 |
-
# Entitas yang dianggap penting
|
13 |
-
important_entities = {"Disease_disorder", "Sign_symptom", "Diagnostic_procedure", "Therapeutic_procedure", "Medication", "Dosage"}
|
14 |
-
|
15 |
# Fungsi untuk ekstraksi entitas medis dari teks
|
16 |
def extract_entities(text):
|
17 |
entities = ner_pipeline(text)
|
@@ -37,10 +34,8 @@ def extract_entities(text):
|
|
37 |
if current_word and current_entity: # Tambahkan kata terakhir yang sudah digabung
|
38 |
merged_entities.append({"word": current_word, "entity": current_entity})
|
39 |
|
40 |
-
# Filter hanya entitas yang relevan
|
41 |
-
filtered_entities = [ent for ent in merged_entities if ent["entity"] in important_entities]
|
42 |
|
43 |
-
return
|
44 |
|
45 |
# Fungsi untuk highlight teks dan menampilkan daftar entitas yang dikenali
|
46 |
def highlight_text(text, entities):
|
@@ -74,7 +69,7 @@ def chat_with_ner(message, history):
|
|
74 |
prompt = f"This text contains medical terms: {', '.join(recognized_entities)}. Please explain briefly."
|
75 |
else:
|
76 |
prompt = message
|
77 |
-
show_to_history = f"Medical Object Recognized : {', '.join(recognized_entities)}. Here are the
|
78 |
response = client.text_generation(prompt, max_new_tokens=100) # Gunakan text_generation()
|
79 |
highlighted_message = highlight_text(message, entities)
|
80 |
|
|
|
9 |
# Load model Named Entity Recognition (NER)
|
10 |
ner_pipeline = pipeline("ner", model="d4data/biomedical-ner-all")
|
11 |
|
|
|
|
|
|
|
12 |
# Fungsi untuk ekstraksi entitas medis dari teks
|
13 |
def extract_entities(text):
|
14 |
entities = ner_pipeline(text)
|
|
|
34 |
if current_word and current_entity: # Tambahkan kata terakhir yang sudah digabung
|
35 |
merged_entities.append({"word": current_word, "entity": current_entity})
|
36 |
|
|
|
|
|
37 |
|
38 |
+
return merged_entities
|
39 |
|
40 |
# Fungsi untuk highlight teks dan menampilkan daftar entitas yang dikenali
|
41 |
def highlight_text(text, entities):
|
|
|
69 |
prompt = f"This text contains medical terms: {', '.join(recognized_entities)}. Please explain briefly."
|
70 |
else:
|
71 |
prompt = message
|
72 |
+
show_to_history = f"Medical Object Recognized : {', '.join(recognized_entities)}. Here are the informations about the recognized medical object."
|
73 |
response = client.text_generation(prompt, max_new_tokens=100) # Gunakan text_generation()
|
74 |
highlighted_message = highlight_text(message, entities)
|
75 |
|