orangeorang commited on
Commit
e9f046d
·
verified ·
1 Parent(s): fbbade5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -7
app.py CHANGED
@@ -9,9 +9,6 @@ client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3")
9
  # Load model Named Entity Recognition (NER)
10
  ner_pipeline = pipeline("ner", model="d4data/biomedical-ner-all")
11
 
12
- # Entitas yang dianggap penting
13
- important_entities = {"Disease_disorder", "Sign_symptom", "Diagnostic_procedure", "Therapeutic_procedure", "Medication", "Dosage"}
14
-
15
  # Fungsi untuk ekstraksi entitas medis dari teks
16
  def extract_entities(text):
17
  entities = ner_pipeline(text)
@@ -37,10 +34,8 @@ def extract_entities(text):
37
  if current_word and current_entity: # Tambahkan kata terakhir yang sudah digabung
38
  merged_entities.append({"word": current_word, "entity": current_entity})
39
 
40
- # Filter hanya entitas yang relevan
41
- filtered_entities = [ent for ent in merged_entities if ent["entity"] in important_entities]
42
 
43
- return filtered_entities
44
 
45
  # Fungsi untuk highlight teks dan menampilkan daftar entitas yang dikenali
46
  def highlight_text(text, entities):
@@ -74,7 +69,7 @@ def chat_with_ner(message, history):
74
  prompt = f"This text contains medical terms: {', '.join(recognized_entities)}. Please explain briefly."
75
  else:
76
  prompt = message
77
- show_to_history = f"Medical Object Recognized : {', '.join(recognized_entities)}. Here are the information about the recognized medical object."
78
  response = client.text_generation(prompt, max_new_tokens=100) # Gunakan text_generation()
79
  highlighted_message = highlight_text(message, entities)
80
 
 
9
  # Load model Named Entity Recognition (NER)
10
  ner_pipeline = pipeline("ner", model="d4data/biomedical-ner-all")
11
 
 
 
 
12
  # Fungsi untuk ekstraksi entitas medis dari teks
13
  def extract_entities(text):
14
  entities = ner_pipeline(text)
 
34
  if current_word and current_entity: # Tambahkan kata terakhir yang sudah digabung
35
  merged_entities.append({"word": current_word, "entity": current_entity})
36
 
 
 
37
 
38
+ return merged_entities
39
 
40
  # Fungsi untuk highlight teks dan menampilkan daftar entitas yang dikenali
41
  def highlight_text(text, entities):
 
69
  prompt = f"This text contains medical terms: {', '.join(recognized_entities)}. Please explain briefly."
70
  else:
71
  prompt = message
72
+ show_to_history = f"Medical Object Recognized : {', '.join(recognized_entities)}. Here are the informations about the recognized medical object."
73
  response = client.text_generation(prompt, max_new_tokens=100) # Gunakan text_generation()
74
  highlighted_message = highlight_text(message, entities)
75