Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import spaces | |
# 加载模型和分词器 | |
model_name = "XiaomiMiMo/MiMo-7B-RL" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
def predict(message, history): | |
# 构建输入 | |
history_text = "" | |
for human, assistant in history: | |
history_text += f"Human: {human}\nAssistant: {assistant}\n" | |
prompt = f"{history_text}Human: {message}\nAssistant:" | |
# 生成回复 | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=10000, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
repetition_penalty=1.1, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) | |
return response.strip() | |
# 创建Gradio界面 | |
demo = gr.ChatInterface( | |
predict, | |
title="MiMo-7B-RL 聊天机器人", | |
description="这是一个基于小米 MiMo-7B-RL 模型的聊天机器人。", | |
examples=["你好!", "请介绍一下你自己", "你能做什么?"], | |
theme=gr.themes.Soft() | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |