Spaces:
Running
on
Zero
Running
on
Zero
90
commited on
Commit
·
9267136
1
Parent(s):
13fa91c
Update space
Browse files- README.md +43 -1
- app.py +41 -58
- requirements.txt +4 -1
README.md
CHANGED
@@ -9,4 +9,46 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# MiMo-7B-RL 聊天机器人
|
13 |
+
|
14 |
+
这是一个使用小米 MiMo-7B-RL 模型构建的简单聊天机器人应用。
|
15 |
+
|
16 |
+
## 环境要求
|
17 |
+
|
18 |
+
- Python 3.8+
|
19 |
+
- CUDA 支持(推荐用于更快的推理)
|
20 |
+
|
21 |
+
## 安装
|
22 |
+
|
23 |
+
1. 克隆此仓库:
|
24 |
+
```bash
|
25 |
+
git clone <repository-url>
|
26 |
+
cd <repository-name>
|
27 |
+
```
|
28 |
+
|
29 |
+
2. 安装依赖:
|
30 |
+
```bash
|
31 |
+
pip install -r requirements.txt
|
32 |
+
```
|
33 |
+
|
34 |
+
## 运行应用
|
35 |
+
|
36 |
+
执行以下命令启动聊天机器人:
|
37 |
+
```bash
|
38 |
+
python app.py
|
39 |
+
```
|
40 |
+
|
41 |
+
启动后,应用将在本地运行,并提供一个网页界面(通常是 http://localhost:7860)。
|
42 |
+
|
43 |
+
## 功能特点
|
44 |
+
|
45 |
+
- 基于小米 MiMo-7B-RL 大语言模型
|
46 |
+
- 支持多轮对话
|
47 |
+
- 简洁的 Gradio 网页界面
|
48 |
+
- 内置示例问题
|
49 |
+
|
50 |
+
## 注意事项
|
51 |
+
|
52 |
+
- 首次运行时需要下载模型,可能需要一些时间
|
53 |
+
- 建议使用具有足够显存的 GPU 来运行模型(建议至少 16GB 显存)
|
54 |
+
- 如果遇到显存不足的问题,可以尝试调整 `app.py` 中的生成参数
|
app.py
CHANGED
@@ -1,64 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# 加载模型和分词器
|
6 |
+
model_name = "XiaomiMiMo/MiMo-7B-RL"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
device_map="auto",
|
12 |
+
trust_remote_code=True
|
13 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
def predict(message, history):
|
16 |
+
# 构建输入
|
17 |
+
history_text = ""
|
18 |
+
for human, assistant in history:
|
19 |
+
history_text += f"Human: {human}\nAssistant: {assistant}\n"
|
20 |
+
prompt = f"{history_text}Human: {message}\nAssistant:"
|
21 |
+
|
22 |
+
# 生成回复
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
24 |
+
outputs = model.generate(
|
25 |
+
**inputs,
|
26 |
+
max_new_tokens=512,
|
27 |
+
do_sample=True,
|
28 |
+
temperature=0.7,
|
29 |
+
top_p=0.9,
|
30 |
+
repetition_penalty=1.1,
|
31 |
+
pad_token_id=tokenizer.eos_token_id
|
32 |
+
)
|
33 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
34 |
+
|
35 |
+
return response.strip()
|
36 |
+
|
37 |
+
# 创建Gradio界面
|
38 |
demo = gr.ChatInterface(
|
39 |
+
predict,
|
40 |
+
title="MiMo-7B-RL 聊天机器人",
|
41 |
+
description="这是一个基于小米 MiMo-7B-RL 模型的聊天机器人。",
|
42 |
+
examples=["你好!", "请介绍一下你自己", "你能做什么?"],
|
43 |
+
theme=gr.themes.Soft()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
|
|
|
46 |
if __name__ == "__main__":
|
47 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
1 |
+
gradio==4.19.2
|
2 |
+
torch>=2.0.0
|
3 |
+
transformers>=4.36.0
|
4 |
+
accelerate>=0.27.0
|