from fastai.vision.all import * import gradio as gr def classify(the_image): prediction, index, probs = learn.predict(the_image) probs_floats = map(float, probs) cat_probs = zip(categories, probs_floats) return dict(cat_probs) learn = load_learner('architecture_model.pkl') categories = learn.dls.vocab image = gr.Image(type='pil') label = gr.Label() examples = ['tudor_cottage.jpg', 'georgian_terrace.jpg'] intf = gr.Interface(fn=classify, inputs=image, outputs=label, examples=examples, title="Architecture Classifier") intf.launch(inline=False)