|
import os |
|
import gradio as gr |
|
from langchain_openai import ChatOpenAI |
|
from dotenv import load_dotenv |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_chroma import Chroma |
|
from langchain_core.documents import Document |
|
|
|
|
|
load_dotenv() |
|
api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
model = ChatOpenAI( |
|
model="gpt-4o-mini", |
|
openai_api_key=api_key |
|
) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
|
|
|
|
vector_store = Chroma( |
|
collection_name="chat_collection", |
|
embedding_function=embeddings, |
|
persist_directory="/tmp/chroma_db", |
|
) |
|
|
|
|
|
def get_chat_history(user_id): |
|
"""Fetches stored messages for a given user from the vector store.""" |
|
retriever = vector_store.as_retriever( |
|
search_type="mmr", |
|
search_kwargs={"k": 100, "fetch_k": 100} |
|
) |
|
|
|
|
|
results = retriever.invoke("Chat history", filter={"user_id": user_id}) |
|
|
|
if not results: |
|
return "" |
|
|
|
|
|
user_history = [doc.page_content for doc in results] |
|
return "\n".join(user_history) if user_history else "" |
|
|
|
def store_chat_message(user_id, user_input, bot_response): |
|
"""Stores user-bot conversations in ChromaDB.""" |
|
chat_entry = f"User: {user_input}\nBot: {bot_response}" |
|
|
|
vector_store.add_documents([Document(page_content=chat_entry, metadata={"user_id": user_id})]) |
|
|
|
|
|
def generate_response(username, user_input): |
|
"""Generates a chatbot response using GPT-4 and stores chat history.""" |
|
user_id = username.lower().strip() |
|
history = get_chat_history(user_id) |
|
messages = [{"role": "system", "content": "You are a helpful AI assistant. Please provide answer in 20 words only"}] |
|
|
|
if history: |
|
messages.append({"role": "user", "content": f"Chat history:\n{history}"}) |
|
|
|
messages.append({"role": "user", "content": user_input}) |
|
|
|
|
|
response = model.invoke(messages) |
|
bot_response = response.content |
|
|
|
|
|
store_chat_message(user_id, user_input, bot_response) |
|
|
|
|
|
return f"{history}\nUser: {user_input}\nBot: {bot_response}" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# π₯ Multi-User Chatbot with GPT-4 and Memory (ChromaDB)") |
|
|
|
|
|
username_input = gr.Dropdown( |
|
label="Select User", |
|
choices=["Aarya", "Ved", "Vivaan"], |
|
) |
|
|
|
|
|
chat_input = gr.Textbox(label="Your Message", placeholder="Type here...") |
|
chat_output = gr.Textbox(label="Chatbot Response", interactive=False) |
|
|
|
|
|
chat_button = gr.Button("Send") |
|
chat_button.click(generate_response, inputs=[username_input, chat_input], outputs=chat_output) |
|
|
|
|
|
demo.launch() |
|
|