Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,110 +1,37 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
import time
|
6 |
-
import asyncio
|
7 |
-
from threading import Thread
|
8 |
-
|
9 |
-
import gradio as gr
|
10 |
import spaces
|
|
|
11 |
import torch
|
12 |
-
import numpy as np
|
13 |
from PIL import Image
|
14 |
-
import edge_tts
|
15 |
-
|
16 |
-
from transformers import (
|
17 |
-
AutoModelForCausalLM,
|
18 |
-
AutoTokenizer,
|
19 |
-
TextIteratorStreamer,
|
20 |
-
Qwen2VLForConditionalGeneration,
|
21 |
-
AutoProcessor,
|
22 |
-
)
|
23 |
-
from transformers.image_utils import load_image
|
24 |
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
css = '''
|
31 |
-
h1 {
|
32 |
-
text-align: center;
|
33 |
-
display: block;
|
34 |
-
}
|
35 |
-
|
36 |
-
#duplicate-button {
|
37 |
-
margin: auto;
|
38 |
-
color: #fff;
|
39 |
-
background: #1565c0;
|
40 |
-
border-radius: 100vh;
|
41 |
-
}
|
42 |
-
'''
|
43 |
-
|
44 |
-
MAX_MAX_NEW_TOKENS = 2048
|
45 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
46 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
47 |
-
|
48 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
49 |
-
|
50 |
-
# --------------------------
|
51 |
-
# Text Generation Components
|
52 |
-
# --------------------------
|
53 |
-
|
54 |
-
# Load text-only model and tokenizer
|
55 |
-
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
57 |
-
model = AutoModelForCausalLM.from_pretrained(
|
58 |
-
model_id,
|
59 |
-
device_map="auto",
|
60 |
-
torch_dtype=torch.bfloat16,
|
61 |
-
)
|
62 |
-
model.eval()
|
63 |
-
|
64 |
-
TTS_VOICES = [
|
65 |
-
"en-US-JennyNeural", # @tts1
|
66 |
-
"en-US-GuyNeural", # @tts2
|
67 |
-
]
|
68 |
-
|
69 |
-
# Multimodal model (text+vision)
|
70 |
-
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
71 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
72 |
-
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
73 |
-
MODEL_ID,
|
74 |
-
trust_remote_code=True,
|
75 |
-
torch_dtype=torch.float16
|
76 |
-
).to("cuda").eval()
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
return output_file
|
83 |
|
84 |
-
|
85 |
-
"""
|
86 |
-
Filter out any chat entries whose "content" is not a string.
|
87 |
-
This helps prevent errors when concatenating previous messages.
|
88 |
-
"""
|
89 |
-
cleaned = []
|
90 |
-
for msg in chat_history:
|
91 |
-
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
92 |
-
cleaned.append(msg)
|
93 |
-
return cleaned
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
# --------------------------
|
98 |
|
99 |
-
# Set up the Flux.1 pipeline
|
100 |
base_model = "black-forest-labs/FLUX.1-dev"
|
101 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
|
102 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
103 |
trigger_word = "Super Realism" # Leave trigger_word blank if not used.
|
|
|
104 |
pipe.load_lora_weights(lora_repo)
|
105 |
pipe.to("cuda")
|
106 |
|
107 |
-
# Define style prompts
|
108 |
style_list = [
|
109 |
{
|
110 |
"name": "3840 x 2160",
|
@@ -123,48 +50,17 @@ style_list = [
|
|
123 |
"prompt": "{prompt}",
|
124 |
},
|
125 |
]
|
|
|
126 |
styles = {k["name"]: k["prompt"] for k in style_list}
|
|
|
127 |
DEFAULT_STYLE_NAME = "3840 x 2160"
|
128 |
STYLE_NAMES = list(styles.keys())
|
129 |
|
130 |
def apply_style(style_name: str, positive: str) -> str:
|
131 |
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
def save_image(img: Image.Image) -> str:
|
136 |
-
"""Save a PIL image with a unique filename and return the path."""
|
137 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
138 |
-
img.save(unique_name)
|
139 |
-
return unique_name
|
140 |
-
|
141 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
142 |
-
if randomize_seed:
|
143 |
-
seed = random.randint(0, MAX_SEED)
|
144 |
-
return seed
|
145 |
-
|
146 |
-
def progress_bar_html(label: str) -> str:
|
147 |
-
"""
|
148 |
-
Returns an HTML snippet for a thin progress bar with a label.
|
149 |
-
The progress bar is styled as a dark red animated bar.
|
150 |
-
"""
|
151 |
-
return f'''
|
152 |
-
<div style="display: flex; align-items: center;">
|
153 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
154 |
-
<div style="width: 110px; height: 5px; background-color: #f0f0f0; border-radius: 2px; overflow: hidden;">
|
155 |
-
<div style="width: 100%; height: 100%; background-color: #ff5900; animation: loading 1.5s linear infinite;"></div>
|
156 |
-
</div>
|
157 |
-
</div>
|
158 |
-
<style>
|
159 |
-
@keyframes loading {{
|
160 |
-
0% {{ transform: translateX(-100%); }}
|
161 |
-
100% {{ transform: translateX(100%); }}
|
162 |
-
}}
|
163 |
-
</style>
|
164 |
-
'''
|
165 |
-
|
166 |
-
@spaces.GPU(duration=60, enable_queue=True)
|
167 |
-
def generate_image_fn(
|
168 |
prompt: str,
|
169 |
seed: int = 0,
|
170 |
width: int = 1024,
|
@@ -174,11 +70,13 @@ def generate_image_fn(
|
|
174 |
style_name: str = DEFAULT_STYLE_NAME,
|
175 |
progress=gr.Progress(track_tqdm=True),
|
176 |
):
|
177 |
-
"""Generate images using the Flux.1 pipeline."""
|
178 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
|
|
179 |
positive_prompt = apply_style(style_name, prompt)
|
|
|
180 |
if trigger_word:
|
181 |
positive_prompt = f"{trigger_word} {positive_prompt}"
|
|
|
182 |
images = pipe(
|
183 |
prompt=positive_prompt,
|
184 |
width=width,
|
@@ -189,160 +87,124 @@ def generate_image_fn(
|
|
189 |
output_type="pil",
|
190 |
).images
|
191 |
image_paths = [save_image(img) for img in images]
|
|
|
192 |
return image_paths, seed
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
input_dict: dict,
|
201 |
-
chat_history: list[dict],
|
202 |
-
max_new_tokens: int = 1024,
|
203 |
-
temperature: float = 0.6,
|
204 |
-
top_p: float = 0.9,
|
205 |
-
top_k: int = 50,
|
206 |
-
repetition_penalty: float = 1.2,
|
207 |
-
):
|
208 |
-
"""
|
209 |
-
Generates chatbot responses with support for multimodal input, TTS, and image generation using Flux.1.
|
210 |
-
Special commands:
|
211 |
-
- "@tts1" or "@tts2": triggers text-to-speech.
|
212 |
-
- "@image": triggers image generation using the Flux.1 pipeline.
|
213 |
-
"""
|
214 |
-
text = input_dict["text"]
|
215 |
-
files = input_dict.get("files", [])
|
216 |
-
|
217 |
-
if text.strip().lower().startswith("@image"):
|
218 |
-
# Remove the "@image" tag and use the rest as prompt
|
219 |
-
prompt_img = text[len("@image"):].strip()
|
220 |
-
# Show animated progress bar for image generation
|
221 |
-
yield progress_bar_html("Generating Image")
|
222 |
-
image_paths, used_seed = generate_image_fn(
|
223 |
-
prompt=prompt_img,
|
224 |
-
seed=1,
|
225 |
-
width=1024,
|
226 |
-
height=1024,
|
227 |
-
guidance_scale=3,
|
228 |
-
randomize_seed=True,
|
229 |
-
style_name=DEFAULT_STYLE_NAME,
|
230 |
-
)
|
231 |
-
# Once done, yield the generated image
|
232 |
-
yield gr.Image(image_paths[0])
|
233 |
-
return # Exit early
|
234 |
-
|
235 |
-
tts_prefix = "@tts"
|
236 |
-
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
237 |
-
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
238 |
-
|
239 |
-
if is_tts and voice_index:
|
240 |
-
voice = TTS_VOICES[voice_index - 1]
|
241 |
-
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
242 |
-
# Clear previous chat history for a fresh TTS request.
|
243 |
-
conversation = [{"role": "user", "content": text}]
|
244 |
-
else:
|
245 |
-
voice = None
|
246 |
-
# Remove any stray @tts tags and build the conversation history.
|
247 |
-
text = text.replace(tts_prefix, "").strip()
|
248 |
-
conversation = clean_chat_history(chat_history)
|
249 |
-
conversation.append({"role": "user", "content": text})
|
250 |
-
|
251 |
-
if files:
|
252 |
-
if len(files) > 1:
|
253 |
-
images = [load_image(image) for image in files]
|
254 |
-
elif len(files) == 1:
|
255 |
-
images = [load_image(files[0])]
|
256 |
-
else:
|
257 |
-
images = []
|
258 |
-
messages = [{
|
259 |
-
"role": "user",
|
260 |
-
"content": [
|
261 |
-
*[{"type": "image", "image": image} for image in images],
|
262 |
-
{"type": "text", "text": text},
|
263 |
-
]
|
264 |
-
}]
|
265 |
-
prompt_multimodal = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
266 |
-
inputs = processor(text=[prompt_multimodal], images=images, return_tensors="pt", padding=True).to("cuda")
|
267 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
268 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
269 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
270 |
-
thread.start()
|
271 |
-
|
272 |
-
buffer = ""
|
273 |
-
# Show animated progress bar for multimodal generation
|
274 |
-
yield progress_bar_html("Thinking...")
|
275 |
-
for new_text in streamer:
|
276 |
-
buffer += new_text
|
277 |
-
buffer = buffer.replace("<|im_end|>", "")
|
278 |
-
time.sleep(0.01)
|
279 |
-
yield buffer
|
280 |
-
else:
|
281 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
282 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
283 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
284 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
285 |
-
input_ids = input_ids.to(model.device)
|
286 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
287 |
-
generation_kwargs = {
|
288 |
-
"input_ids": input_ids,
|
289 |
-
"streamer": streamer,
|
290 |
-
"max_new_tokens": max_new_tokens,
|
291 |
-
"do_sample": True,
|
292 |
-
"top_p": top_p,
|
293 |
-
"top_k": top_k,
|
294 |
-
"temperature": temperature,
|
295 |
-
"num_beams": 1,
|
296 |
-
"repetition_penalty": repetition_penalty,
|
297 |
-
}
|
298 |
-
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
299 |
-
t.start()
|
300 |
-
|
301 |
-
outputs = []
|
302 |
-
# Show animated progress bar for text generation
|
303 |
-
yield progress_bar_html("Thinking...")
|
304 |
-
for new_text in streamer:
|
305 |
-
outputs.append(new_text)
|
306 |
-
yield "".join(outputs)
|
307 |
-
|
308 |
-
final_response = "".join(outputs)
|
309 |
-
yield final_response
|
310 |
-
|
311 |
-
# If TTS was requested, convert the final response to speech.
|
312 |
-
if is_tts and voice:
|
313 |
-
output_file = asyncio.run(text_to_speech(final_response, voice))
|
314 |
-
yield gr.Audio(output_file, autoplay=True)
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
if __name__ == "__main__":
|
348 |
-
demo.queue(max_size=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
import gradio as gr
|
3 |
import torch
|
|
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
+
import random
|
7 |
+
import uuid
|
8 |
+
from typing import Tuple
|
9 |
+
import numpy as np
|
10 |
|
11 |
+
def save_image(img):
|
12 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
13 |
+
img.save(unique_name)
|
14 |
+
return unique_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
17 |
+
if randomize_seed:
|
18 |
+
seed = random.randint(0, MAX_SEED)
|
19 |
+
return seed
|
|
|
20 |
|
21 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
if not torch.cuda.is_available():
|
24 |
+
DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
|
|
|
25 |
|
|
|
26 |
base_model = "black-forest-labs/FLUX.1-dev"
|
27 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
28 |
+
|
29 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
30 |
trigger_word = "Super Realism" # Leave trigger_word blank if not used.
|
31 |
+
|
32 |
pipe.load_lora_weights(lora_repo)
|
33 |
pipe.to("cuda")
|
34 |
|
|
|
35 |
style_list = [
|
36 |
{
|
37 |
"name": "3840 x 2160",
|
|
|
50 |
"prompt": "{prompt}",
|
51 |
},
|
52 |
]
|
53 |
+
|
54 |
styles = {k["name"]: k["prompt"] for k in style_list}
|
55 |
+
|
56 |
DEFAULT_STYLE_NAME = "3840 x 2160"
|
57 |
STYLE_NAMES = list(styles.keys())
|
58 |
|
59 |
def apply_style(style_name: str, positive: str) -> str:
|
60 |
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)
|
61 |
|
62 |
+
@spaces.GPU(duration=60, enable_queue=True
|
63 |
+
def generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
prompt: str,
|
65 |
seed: int = 0,
|
66 |
width: int = 1024,
|
|
|
70 |
style_name: str = DEFAULT_STYLE_NAME,
|
71 |
progress=gr.Progress(track_tqdm=True),
|
72 |
):
|
|
|
73 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
74 |
+
|
75 |
positive_prompt = apply_style(style_name, prompt)
|
76 |
+
|
77 |
if trigger_word:
|
78 |
positive_prompt = f"{trigger_word} {positive_prompt}"
|
79 |
+
|
80 |
images = pipe(
|
81 |
prompt=positive_prompt,
|
82 |
width=width,
|
|
|
87 |
output_type="pil",
|
88 |
).images
|
89 |
image_paths = [save_image(img) for img in images]
|
90 |
+
print(image_paths)
|
91 |
return image_paths, seed
|
92 |
|
93 |
+
examples = [
|
94 |
+
"Super Realism, High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
|
95 |
+
"Woman in a red jacket, snowy, in the style of hyper-realistic portraiture, caninecore, mountainous vistas, timeless beauty, palewave, iconic, distinctive noses --ar 72:101 --stylize 750 --v 6",
|
96 |
+
"Super Realism, Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
|
97 |
+
"Super-realism, Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights. The womans eyes are closed, her lips are slightly parted, as if she is looking up at the sky. Her hair is cascading over her shoulders, framing her face. She is wearing a sleeveless top, adorned with tiny white dots, and a gold chain necklace around her neck. Her left earrings are dangling from her ears, adding a pop of color to the scene."
|
98 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
css = '''
|
101 |
+
.gradio-container{max-width: 888px !important}
|
102 |
+
h1{text-align:center}
|
103 |
+
footer {
|
104 |
+
visibility: hidden
|
105 |
+
}
|
106 |
+
.submit-btn {
|
107 |
+
background-color: #e34949 !important;
|
108 |
+
color: white !important;
|
109 |
+
}
|
110 |
+
.submit-btn:hover {
|
111 |
+
background-color: #ff3b3b !important;
|
112 |
+
}
|
113 |
+
'''
|
114 |
|
115 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column(scale=1):
|
118 |
+
prompt = gr.Text(
|
119 |
+
label="Prompt",
|
120 |
+
show_label=False,
|
121 |
+
max_lines=1,
|
122 |
+
placeholder="Enter your prompt",
|
123 |
+
container=False,
|
124 |
+
)
|
125 |
+
run_button = gr.Button("Generate as ( 768 x 1024 )🤗", scale=0, elem_classes="submit-btn")
|
126 |
+
|
127 |
+
with gr.Accordion("Advanced options", open=True, visible=True):
|
128 |
+
seed = gr.Slider(
|
129 |
+
label="Seed",
|
130 |
+
minimum=0,
|
131 |
+
maximum=MAX_SEED,
|
132 |
+
step=1,
|
133 |
+
value=0,
|
134 |
+
visible=True
|
135 |
+
)
|
136 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
137 |
+
|
138 |
+
with gr.Row(visible=True):
|
139 |
+
width = gr.Slider(
|
140 |
+
label="Width",
|
141 |
+
minimum=512,
|
142 |
+
maximum=2048,
|
143 |
+
step=64,
|
144 |
+
value=768,
|
145 |
+
)
|
146 |
+
height = gr.Slider(
|
147 |
+
label="Height",
|
148 |
+
minimum=512,
|
149 |
+
maximum=2048,
|
150 |
+
step=64,
|
151 |
+
value=1024,
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
guidance_scale = gr.Slider(
|
156 |
+
label="Guidance Scale",
|
157 |
+
minimum=0.1,
|
158 |
+
maximum=20.0,
|
159 |
+
step=0.1,
|
160 |
+
value=3.0,
|
161 |
+
)
|
162 |
+
num_inference_steps = gr.Slider(
|
163 |
+
label="Number of inference steps",
|
164 |
+
minimum=1,
|
165 |
+
maximum=40,
|
166 |
+
step=1,
|
167 |
+
value=28,
|
168 |
+
)
|
169 |
+
|
170 |
+
style_selection = gr.Radio(
|
171 |
+
show_label=True,
|
172 |
+
container=True,
|
173 |
+
interactive=True,
|
174 |
+
choices=STYLE_NAMES,
|
175 |
+
value=DEFAULT_STYLE_NAME,
|
176 |
+
label="Quality Style",
|
177 |
+
)
|
178 |
+
|
179 |
+
with gr.Column(scale=2):
|
180 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
181 |
+
|
182 |
+
gr.Examples(
|
183 |
+
examples=examples,
|
184 |
+
inputs=prompt,
|
185 |
+
outputs=[result, seed],
|
186 |
+
fn=generate,
|
187 |
+
cache_examples=False,
|
188 |
+
)
|
189 |
+
|
190 |
+
gr.on(
|
191 |
+
triggers=[
|
192 |
+
prompt.submit,
|
193 |
+
run_button.click,
|
194 |
+
],
|
195 |
+
fn=generate,
|
196 |
+
inputs=[
|
197 |
+
prompt,
|
198 |
+
seed,
|
199 |
+
width,
|
200 |
+
height,
|
201 |
+
guidance_scale,
|
202 |
+
randomize_seed,
|
203 |
+
style_selection,
|
204 |
+
],
|
205 |
+
outputs=[result, seed],
|
206 |
+
api_name="run",
|
207 |
+
)
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
+
demo.queue(max_size=40).launch()
|