Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
import re | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import edge_tts | |
import cv2 | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
Gemma3ForConditionalGeneration, | |
) | |
from transformers.image_utils import load_image | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
# Constants | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
MAX_SEED = np.iinfo(np.int32).max | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Helper function to return a progress bar HTML snippet. | |
def progress_bar_html(label: str) -> str: | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #00FF00 ; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
# TEXT & TTS MODELS | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
TTS_VOICES = [ | |
"en-US-JennyNeural", # @tts1 | |
"en-US-GuyNeural", # @tts2 | |
] | |
# MULTIMODAL (OCR) MODELS | |
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_VL, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def clean_chat_history(chat_history): | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) | |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) | |
default_negative = os.getenv("default_negative", "") | |
def check_text(prompt, negative=""): | |
for i in bad_words: | |
if i in prompt: | |
return True | |
for i in bad_words_negative: | |
if i in negative: | |
return True | |
return False | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
dtype = torch.float16 if device.type == "cuda" else torch.float32 | |
# STABLE DIFFUSION IMAGE GENERATION MODELS | |
if torch.cuda.is_available(): | |
# Lightning 5 model | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False | |
).to(device) | |
pipe.text_encoder = pipe.text_encoder.half() | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
print("Loaded RealVisXL_V5.0_Lightning on Device!") | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model RealVisXL_V5.0_Lightning Compiled!") | |
# Lightning 4 model | |
pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
pipe2.text_encoder = pipe2.text_encoder.half() | |
if ENABLE_CPU_OFFLOAD: | |
pipe2.enable_model_cpu_offload() | |
else: | |
pipe2.to(device) | |
print("Loaded RealVisXL_V4.0 on Device!") | |
if USE_TORCH_COMPILE: | |
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model RealVisXL_V4.0 Compiled!") | |
# Turbo v3 model | |
pipe3 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V3.0_Turbo", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
pipe3.text_encoder = pipe3.text_encoder.half() | |
if ENABLE_CPU_OFFLOAD: | |
pipe3.enable_model_cpu_offload() | |
else: | |
pipe3.to(device) | |
print("Loaded RealVisXL_V3.0_Turbo on Device!") | |
if USE_TORCH_COMPILE: | |
pipe3.unet = torch.compile(pipe3.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model RealVisXL_V3.0_Turbo Compiled!") | |
else: | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False | |
).to(device) | |
pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
pipe3 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V3.0_Turbo", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
print("Running on CPU; models loaded in float32.") | |
DEFAULT_MODEL = "Lightning 5" | |
MODEL_CHOICES = [DEFAULT_MODEL, "Lightning 4", "Turbo v3"] | |
models = { | |
"Lightning 5": pipe, | |
"Lightning 4": pipe2, | |
"Turbo v3": pipe3 | |
} | |
def save_image(img: Image.Image) -> str: | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
# GEMMA3-4B MULTIMODAL MODEL | |
gemma3_model_id = "google/gemma-3-4b-it" | |
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained( | |
gemma3_model_id, device_map="auto" | |
).eval() | |
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id) | |
# VIDEO PROCESSING HELPER | |
def downsample_video(video_path): | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
# Sample 10 evenly spaced frames. | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
# Convert from BGR to RGB and then to PIL Image. | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
# MAIN GENERATION FUNCTION | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
lower_text = text.lower().strip() | |
# IMAGE GENERATION BRANCH (Stable Diffusion models) | |
if (lower_text.startswith("@lightningv5") or | |
lower_text.startswith("@lightningv4") or | |
lower_text.startswith("@turbov3")): | |
# Determine model choice based on flag. | |
model_choice = None | |
if "@lightningv5" in lower_text: | |
model_choice = "Lightning 5" | |
elif "@lightningv4" in lower_text: | |
model_choice = "Lightning 4" | |
elif "@turbov3" in lower_text: | |
model_choice = "Turbo v3" | |
# Remove the model flag from the prompt. | |
prompt_clean = re.sub(r"@lightningv5", "", text, flags=re.IGNORECASE) | |
prompt_clean = re.sub(r"@lightningv4", "", prompt_clean, flags=re.IGNORECASE) | |
prompt_clean = re.sub(r"@turbov3", "", prompt_clean, flags=re.IGNORECASE) | |
prompt_clean = prompt_clean.strip().strip('"') | |
# Default parameters for single image generation. | |
width = 1024 | |
height = 1024 | |
guidance_scale = 6.0 | |
seed_val = 0 | |
randomize_seed_flag = True | |
seed_val = int(randomize_seed_fn(seed_val, randomize_seed_flag)) | |
generator = torch.Generator(device=device).manual_seed(seed_val) | |
options = { | |
"prompt": prompt_clean, | |
"negative_prompt": default_negative, | |
"width": width, | |
"height": height, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": 30, | |
"generator": generator, | |
"num_images_per_prompt": 1, | |
"use_resolution_binning": True, | |
"output_type": "pil", | |
} | |
if device.type == "cuda": | |
torch.cuda.empty_cache() | |
selected_pipe = models.get(model_choice, pipe) | |
yield progress_bar_html("Processing Image Generation") | |
images = selected_pipe(**options).images | |
image_path = save_image(images[0]) | |
yield gr.Image(image_path) | |
return | |
# GEMMA3-4B TEXT & MULTIMODAL (image) Branch | |
if lower_text.startswith("@gemma3-4b"): | |
# If it is video, let the dedicated branch handle it. | |
if lower_text.startswith("@gemma3-4b-video"): | |
pass # video branch is handled below. | |
else: | |
# Remove the gemma3 flag from the prompt. | |
prompt_clean = re.sub(r"@gemma3-4b", "", text, flags=re.IGNORECASE).strip().strip('"') | |
if files: | |
# If image files are provided, load them. | |
images = [load_image(f) for f in files] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": prompt_clean}, | |
] | |
}] | |
else: | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
] | |
inputs = gemma3_processor.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, | |
return_dict=True, return_tensors="pt" | |
).to(gemma3_model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer( | |
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Gemma3-4b") | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
return | |
# NEW: GEMMA3-4B VIDEO Branch | |
if lower_text.startswith("@video-infer"): | |
# Remove the video flag from the prompt. | |
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"') | |
if files: | |
# Assume the first file is a video. | |
video_path = files[0] | |
frames = downsample_video(video_path) | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
] | |
# Append each frame as an image with a timestamp label. | |
for frame in frames: | |
image, timestamp = frame | |
# Save the frame image to a temporary unique filename. | |
image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
image.save(image_path) | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "url": image_path}) | |
else: | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
] | |
inputs = gemma3_processor.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, | |
return_dict=True, return_tensors="pt" | |
).to(gemma3_model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer( | |
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Gemma3-4b Video") | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Otherwise, handle text/chat (and TTS) generation. | |
tts_prefix = "@tts" | |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
if is_tts and voice_index: | |
voice = TTS_VOICES[voice_index - 1] | |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
conversation = [{"role": "user", "content": text}] | |
else: | |
voice = None | |
text = text.replace(tts_prefix, "").strip() | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
if files: | |
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2VL Ocr") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
else: | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
if is_tts and voice: | |
output_file = asyncio.run(text_to_speech(final_response, voice)) | |
yield gr.Audio(output_file, autoplay=True) | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
[{"text": "@gemma3-4b Explain the Image", "files": ["examples/3.jpg"]}], | |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}], | |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}], | |
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}], | |
[{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}], | |
[{"text": "@video-infer Summarize the events in this video", "files": ["examples/sky.mp4"]}], | |
[{"text": "@video-infer What is in the video ?", "files": ["examples/redlight.mp4"]}], | |
[{"text": "@gemma3-4b Where do the major drought happen?", "files": ["examples/111.png"]}], | |
[{"text": "@gemma3-4b Transcription of the letter", "files": ["examples/222.png"]}], | |
['@lightningv5 Chocolate dripping from a donut'], | |
["Python Program for Array Rotation"], | |
["@tts1 Who is Nikola Tesla, and why did he die?"], | |
['@lightningv4 Cat holding a sign that says hello world'], | |
['@turbov3 Anime illustration of a wiener schnitzel'], | |
["@tts2 What causes rainbows to form?"], | |
], | |
cache_examples=False, | |
type="messages", | |
description="# **Gemma 3 `@gemma3-4b, @video-infer for video understanding`**", | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="@gemma3-4b for multimodal, @video-infer for video, @lightningv5, @lightningv4, @turbov3 for image gen !"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |