Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
import re | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import ( | |
AutoProcessor, | |
Gemma3ForConditionalGeneration, | |
Qwen2VLForConditionalGeneration, | |
TextIteratorStreamer, | |
) | |
from transformers.image_utils import load_image | |
# Constants | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
MAX_SEED = np.iinfo(np.int32).max | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Helper function to return a progress bar HTML snippet. | |
def progress_bar_html(label: str) -> str: | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
# Qwen2-VL (for optional image inference) | |
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_VL, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
def clean_chat_history(chat_history): | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) | |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) | |
default_negative = os.getenv("default_negative", "") | |
def check_text(prompt, negative=""): | |
for i in bad_words: | |
if i in prompt: | |
return True | |
for i in bad_words_negative: | |
if i in negative: | |
return True | |
return False | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
dtype = torch.float16 if device.type == "cuda" else torch.float32 | |
# Gemma3 Model (default for text, image, & video inference) | |
gemma3_model_id = "google/gemma-3-4b-it" | |
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained( | |
gemma3_model_id, device_map="auto" | |
).eval() | |
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id) | |
# VIDEO PROCESSING HELPER | |
def downsample_video(video_path): | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
# Sample 10 evenly spaced frames. | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
# Convert from BGR to RGB and then to PIL Image. | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
# MAIN GENERATION FUNCTION | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
lower_text = text.lower().strip() | |
# ----- Qwen2-VL branch (triggered with @qwen2-vl) ----- | |
if lower_text.startswith("@qwen2-vl"): | |
prompt_clean = re.sub(r"@qwen2-vl", "", text, flags=re.IGNORECASE).strip().strip('"') | |
if files: | |
images = [load_image(f) for f in files] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": prompt_clean}, | |
] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
else: | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
] | |
inputs = processor.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, | |
return_dict=True, return_tensors="pt" | |
).to("cuda", dtype=torch.float16) | |
streamer = TextIteratorStreamer(processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2VL") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# ----- Default branch: Gemma3 (for text, image, & video inference) ----- | |
if files: | |
# Check if any provided file is a video based on extension. | |
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm") | |
if any(str(f).lower().endswith(video_extensions) for f in files): | |
# Video inference branch. | |
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"') | |
video_path = files[0] | |
frames = downsample_video(video_path) | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
] | |
# Append each frame (with its timestamp) to the conversation. | |
for frame in frames: | |
image, timestamp = frame | |
image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
image.save(image_path) | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "url": image_path}) | |
inputs = gemma3_processor.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, | |
return_dict=True, return_tensors="pt" | |
).to(gemma3_model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing video with Gemma3") | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
return | |
else: | |
# Image inference branch. | |
prompt_clean = re.sub(r"@gemma3", "", text, flags=re.IGNORECASE).strip().strip('"') | |
images = [load_image(f) for f in files] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": prompt_clean}, | |
] | |
}] | |
inputs = gemma3_processor.apply_chat_template( | |
messages, tokenize=True, add_generation_prompt=True, | |
return_dict=True, return_tensors="pt" | |
).to(gemma3_model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Gemma3") | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
return | |
else: | |
# Text-only inference branch. | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": text}]} | |
] | |
inputs = gemma3_processor.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, | |
return_dict=True, return_tensors="pt" | |
).to(gemma3_model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
# Gradio Interface | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
[ | |
{ | |
"text": "Create a short story based on the images.", | |
"files": [ | |
"examples/1111.jpg", | |
"examples/2222.jpg", | |
"examples/3333.jpg", | |
], | |
} | |
], | |
[{"text": "Explain the Image", "files": ["examples/3.jpg"]}], | |
[{"text": "Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}], | |
[{"text": "Which movie character is this?", "files": ["examples/9999.jpg"]}], | |
["Explain Critical Temperature of Substance"], | |
[{"text": "@qwen2-vl Transcription of the letter", "files": ["examples/222.png"]}], | |
[{"text": "Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}], | |
[{"text": "Describe the video", "files": ["examples/Missing.mp4"]}], | |
[{"text": "Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}], | |
[{"text": "Summarize the events in this video", "files": ["examples/sky.mp4"]}], | |
[{"text": "What is in the video ?", "files": ["examples/redlight.mp4"]}], | |
["Python Program for Array Rotation"], | |
["Explain Critical Temperature of Substance"] | |
], | |
cache_examples=False, | |
type="messages", | |
description="# **Gemma 3 Multimodal** \n`Use @qwen2-vl to switch to Qwen2-VL OCR for image inference and @video-infer for video input`", | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag with @qwen2-vl for Qwen2-VL inference if needed."), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |