Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import time | |
import torch | |
import spaces | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
import cv2 | |
import numpy as np | |
from transformers import ( | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
AutoModelForImageTextToText, | |
) | |
# Helper function to return a progress bar HTML snippet. | |
def progress_bar_html(label: str) -> str: | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
# Helper function to downsample a video into 10 evenly spaced frames. | |
def downsample_video(video_path): | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
# Sample 10 evenly spaced frames. | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
# Model and processor setups | |
# Setup for Qwen2VL OCR branch (default). | |
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or use "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct" | |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) | |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
QV_MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# Setup for Aya-Vision branch. | |
AYA_MODEL_ID = "CohereForAI/aya-vision-8b" | |
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID) | |
aya_model = AutoModelForImageTextToText.from_pretrained( | |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16 | |
) | |
# --------------------------- | |
# Main Inference Function | |
# --------------------------- | |
def model_inference(input_dict, history): | |
text = input_dict["text"].strip() | |
files = input_dict.get("files", []) | |
# Branch for video inference with Aya-Vision using @video-infer. | |
if text.lower().startswith("@video-infer"): | |
prompt = text[len("@video-infer"):].strip() | |
if not files: | |
yield "Error: Please provide a video for the @video-infer feature." | |
return | |
video_path = files[0] | |
frames = downsample_video(video_path) | |
if not frames: | |
yield "Error: Could not extract frames from the video." | |
return | |
# Build messages: start with the prompt then add each frame with its timestamp. | |
content_list = [] | |
content_list.append({"type": "text", "text": prompt}) | |
for frame, timestamp in frames: | |
content_list.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content_list.append({"type": "image", "image": frame}) | |
messages = [{ | |
"role": "user", | |
"content": content_list, | |
}] | |
inputs = aya_processor.apply_chat_template( | |
messages, | |
padding=True, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt" | |
).to(aya_model.device) | |
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
temperature=0.3 | |
) | |
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing video with Aya-Vision-8b") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Branch for single image inference with Aya-Vision using @aya-vision. | |
if text.lower().startswith("@aya-vision"): | |
text_prompt = text[len("@aya-vision"):].strip() | |
if not files: | |
yield "Error: Please provide an image for the @aya-vision feature." | |
return | |
else: | |
# Use the first provided image. | |
image = load_image(files[0]) | |
yield progress_bar_html("Processing with Aya-Vision-8b") | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text_prompt}, | |
], | |
}] | |
inputs = aya_processor.apply_chat_template( | |
messages, | |
padding=True, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt" | |
).to(aya_model.device) | |
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
temperature=0.3 | |
) | |
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Default branch: Use Qwen2VL OCR for text (with optional images). | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
if text == "" and not images: | |
yield "Error: Please input a query and optionally image(s)." | |
return | |
if text == "" and images: | |
yield "Error: Please input a text query along with the image(s)." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
], | |
}] | |
prompt = qwen_processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
inputs = qwen_processor( | |
text=[prompt], | |
images=images if images else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2VL OCR") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
# Gradio Interface Setup | |
examples = [ | |
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}], | |
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}], | |
[{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}], | |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}], | |
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}], | |
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
] | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
description="# **Multimodal OCR `@aya-vision for image, @video-infer for video`**", | |
examples=examples, | |
textbox=gr.MultimodalTextbox( | |
label="Query Input", | |
file_types=["image", "video"], | |
file_count="multiple", | |
placeholder="Tag @aya-vision for Aya-Vision image infer, @video-infer for Aya-Vision video infer, default runs Qwen2VL OCR" | |
), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
) | |
demo.launch(debug=True) |