Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
import os
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
def load_model(repo_id, model_filename="best_int8_openvino_model"):
|
9 |
+
"""
|
10 |
+
Loads a YOLO model from Hugging Face Hub.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
repo_id: The ID of the Hugging Face Hub repository.
|
14 |
+
model_filename: The filename of the YOLO model within the repository.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
The loaded YOLO model.
|
18 |
+
"""
|
19 |
+
download_dir = snapshot_download(repo_id)
|
20 |
+
model_path = os.path.join(download_dir, model_filename)
|
21 |
+
detection_model = YOLO(model_path, task='detect')
|
22 |
+
return detection_model
|
23 |
+
|
24 |
+
def predict_image(pilimg, conf_thresh, iou_thresh):
|
25 |
+
"""
|
26 |
+
Performs object detection on the input image.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
pilimg: The input image as a PIL Image object.
|
30 |
+
conf_thresh: The confidence threshold for object detection.
|
31 |
+
iou_thresh: The IoU threshold for non-maximum suppression.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
The processed image with detected objects highlighted.
|
35 |
+
"""
|
36 |
+
source = pilimg
|
37 |
+
result = detection_model(source, conf=conf_thresh, iou=iou_thresh)
|
38 |
+
img_bgr = result[0].plot()
|
39 |
+
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # Convert BGR to RGB
|
40 |
+
return out_pilimg
|
41 |
+
|
42 |
+
def predict_video(video_path, conf_thresh, iou_thresh):
|
43 |
+
"""
|
44 |
+
Performs object detection on a video.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
video_path: Path to the video file.
|
48 |
+
conf_thresh: The confidence threshold for object detection.
|
49 |
+
iou_thresh: The IoU threshold for non-maximum suppression.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
A list of processed frames with detected objects highlighted.
|
53 |
+
"""
|
54 |
+
cap = cv2.VideoCapture(video_path)
|
55 |
+
frame_list = []
|
56 |
+
|
57 |
+
while True:
|
58 |
+
ret, frame = cap.read()
|
59 |
+
if not ret:
|
60 |
+
break
|
61 |
+
pilimg = Image.fromarray(frame)
|
62 |
+
result = detection_model(pilimg, conf=conf_thresh, iou=iou_thresh)
|
63 |
+
img_bgr = result[0].plot()
|
64 |
+
frame_list.append(img_bgr)
|
65 |
+
|
66 |
+
cap.release()
|
67 |
+
return frame_list
|
68 |
+
|
69 |
+
REPO_ID = "qiqiyuan/glasses_and_mouth"
|
70 |
+
detection_model = load_model(REPO_ID)
|
71 |
+
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=[predict_image, predict_video],
|
74 |
+
inputs=[
|
75 |
+
gr.Image(type="pil", label="Image"),
|
76 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.5, label="Confidence Threshold"),
|
77 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.5, label="IoU Threshold"),
|
78 |
+
gr.File(label="Video (optional)")
|
79 |
+
],
|
80 |
+
outputs=[
|
81 |
+
gr.Image(type="pil", label="Image Output"),
|
82 |
+
gr.Video(label="Video Output")
|
83 |
+
],
|
84 |
+
title="Object Detection with YOLO",
|
85 |
+
description="Upload an image or video to detect glasses and mouth.",
|
86 |
+
examples=[["examples/image1.jpg"], ["examples/video1.mp4"]] # Add example images/videos
|
87 |
+
)
|
88 |
+
|
89 |
+
iface.launch(share=True)
|