import streamlit as st from transformers import pipeline st.title("Building Generative AI Tool") st.subheader("Converting Text to Speech") text = st.text_input("Enter your text here...", value="") # # Using model="suno/bark-small" # pipe_t2a = pipeline("text-to-speech", model="suno/bark-small", device='cpu') # Use 'cpu' to avoid device recognition error # # Perform text-to-speech conversion if text is provided # if text: # output = pipe_t2a(text) # # Display the audio output # st.audio(output["audio"], format="audio/wav", sample_rate=output["sampling_rate"]) # facebook/fastspeech2-en-ljspeech from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub from fairseq.models.text_to_speech.hub_interface import TTSHubInterface # import IPython.display as ipd models, cfg, task = load_model_ensemble_and_task_from_hf_hub( "facebook/fastspeech2-en-ljspeech", arg_overrides={"vocoder": "hifigan", "fp16": False} ) model = models[0] TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg) generator = task.build_generator([model], cfg) # text = "Hello, this is a test run." #ipd.Audio(wav, rate=rate) if text: sample = TTSHubInterface.get_model_input(task, text) wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample) # Display the audio output st.audio(wav, format="audio/wav", sample_rate=rate)