Ritvik
commited on
Commit
·
add1d5a
1
Parent(s):
4f05f34
Updated app 5
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ from duckduckgo_search import DDGS
|
|
5 |
import os
|
6 |
import traceback
|
7 |
import json
|
|
|
|
|
|
|
8 |
|
9 |
# Load .env environment variables
|
10 |
load_dotenv()
|
@@ -12,39 +15,91 @@ api_key = os.getenv("GROQ_API_KEY")
|
|
12 |
client = Groq(api_key=api_key)
|
13 |
MODEL_NAME = "llama-3.3-70b-versatile"
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
results = []
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# ReAct agent response with thought process
|
27 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
28 |
try:
|
29 |
# Initialize messages with ReAct system prompt
|
30 |
react_prompt = (
|
31 |
f"{system_message}\n\n"
|
32 |
"You are using the ReAct framework. For each user query, follow these steps:\n"
|
33 |
-
"1. **Thought**: Reason about the query and decide the next step. For location-specific queries (e.g.,
|
34 |
-
"2. **Observation**: Note relevant information (e.g., user input, tool results, or context).\n"
|
35 |
-
"3. **Action**: Choose an action: 'search' (
|
36 |
-
"Format your response as a valid JSON object with 'thought', 'observation', 'action', and optionally 'search_query'
|
37 |
"{\n"
|
38 |
" \"thought\": \"User asks for garages in Dehradun, need to search.\",\n"
|
39 |
" \"observation\": \"Location: Dehradun\",\n"
|
40 |
" \"action\": \"search\",\n"
|
41 |
" \"search_query\": \"car repair shops Dehradun\"\n"
|
42 |
"}\n"
|
43 |
-
"
|
|
|
44 |
)
|
45 |
messages = [{"role": "system", "content": react_prompt}]
|
46 |
|
47 |
-
# Add history
|
48 |
for msg in history:
|
49 |
role = msg.get("role")
|
50 |
content = msg.get("content")
|
@@ -69,60 +124,101 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
69 |
"ac not cooling", "car breakdown", "pickup and drop car service"
|
70 |
]
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# Check for trigger keywords to directly perform search
|
73 |
if any(keyword in message.lower() for keyword in trigger_keywords):
|
74 |
print(f"Trigger keyword detected in query: {message}")
|
75 |
search_results = web_search_duckduckgo(message)
|
76 |
print(f"Search Results:\n{search_results}")
|
77 |
-
final_response = f"🔍 Here are some results I found:\n\n{search_results}"
|
78 |
-
for i in range(0, len(final_response), 10):
|
79 |
yield final_response[:i + 10]
|
80 |
return
|
81 |
|
82 |
# ReAct loop (up to 3 iterations)
|
83 |
max_iterations = 3
|
84 |
-
max_json_retries = 2
|
85 |
current_response = ""
|
86 |
for iteration in range(max_iterations):
|
87 |
print(f"\n--- ReAct Iteration {iteration + 1} ---")
|
88 |
|
89 |
# Call LLM with current messages
|
90 |
for retry in range(max_json_retries):
|
91 |
-
completion = client.chat.completions.create(
|
92 |
-
model=MODEL_NAME,
|
93 |
-
messages=messages,
|
94 |
-
temperature=temperature,
|
95 |
-
max_completion_tokens=max_tokens,
|
96 |
-
top_p=top_p,
|
97 |
-
stream=False,
|
98 |
-
)
|
99 |
-
raw_response = completion.choices[0].message.content
|
100 |
-
|
101 |
-
# Parse LLM response
|
102 |
try:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
if retry + 1 == max_json_retries:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
observation = "N/A (Invalid JSON)"
|
120 |
action = "respond"
|
121 |
else:
|
122 |
-
|
123 |
-
"role": "system",
|
124 |
-
"content": "Previous response was not valid JSON. Please provide a valid JSON object with 'thought', 'observation', 'action', and optionally 'search_query' or 'response'."
|
125 |
-
})
|
126 |
|
127 |
# Handle action
|
128 |
if action == "search":
|
@@ -138,7 +234,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
138 |
|
139 |
elif action == "respond":
|
140 |
final_response = react_step.get("response", raw_response)
|
141 |
-
current_response = final_response
|
142 |
print(f"Final Response:\n{current_response}")
|
143 |
break
|
144 |
elif action == "clarify":
|
@@ -146,6 +242,22 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
146 |
messages.append({"role": "assistant", "content": raw_response})
|
147 |
current_response = clarification
|
148 |
print(f"Clarification Request:\n{current_response}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
else:
|
150 |
print("Unknown action, continuing to next iteration.")
|
151 |
messages.append({"role": "assistant", "content": raw_response})
|
@@ -159,23 +271,46 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
159 |
print(error_msg)
|
160 |
yield error_msg
|
161 |
|
162 |
-
# Gradio
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
demo.launch()
|
|
|
5 |
import os
|
6 |
import traceback
|
7 |
import json
|
8 |
+
import time
|
9 |
+
from collections import defaultdict
|
10 |
+
import requests
|
11 |
|
12 |
# Load .env environment variables
|
13 |
load_dotenv()
|
|
|
15 |
client = Groq(api_key=api_key)
|
16 |
MODEL_NAME = "llama-3.3-70b-versatile"
|
17 |
|
18 |
+
# In-memory cache for search results
|
19 |
+
search_cache = defaultdict(str)
|
20 |
+
cache_timeout = 3600 # 1 hour
|
21 |
+
|
22 |
+
# In-memory Q&A store for community simulation
|
23 |
+
community_qa = []
|
24 |
+
|
25 |
+
# Diagnostics knowledge base (simplified)
|
26 |
+
diagnostics_db = {
|
27 |
+
"Maruti Alto": {
|
28 |
+
"check engine light": {
|
29 |
+
"causes": ["Faulty oxygen sensor", "Loose fuel cap", "Spark plug issues"],
|
30 |
+
"solutions": ["Run OBD-II scan (₹500-₹1500)", "Tighten/replace fuel cap (₹100-₹500)", "Replace spark plugs (₹1000-₹2000)"],
|
31 |
+
"severity": "Moderate"
|
32 |
+
},
|
33 |
+
"poor fuel efficiency": {
|
34 |
+
"causes": ["Clogged air filter", "Tire underinflation", "Fuel injector issues"],
|
35 |
+
"solutions": ["Replace air filter (₹300-₹800)", "Check tire pressure (free)", "Clean/replace injectors (₹2000-₹5000)"],
|
36 |
+
"severity": "Low"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"Hyundai i20": {
|
40 |
+
"ac not cooling": {
|
41 |
+
"causes": ["Low refrigerant", "Faulty compressor", "Clogged condenser"],
|
42 |
+
"solutions": ["Refill refrigerant (₹1500-₹3000)", "Repair/replace compressor (₹5000-₹15000)", "Clean condenser (₹1000-₹2000)"],
|
43 |
+
"severity": "High"
|
44 |
+
}
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
# Maintenance tips
|
49 |
+
maintenance_tips = [
|
50 |
+
"Check tire pressure monthly to improve fuel efficiency.",
|
51 |
+
"Change engine oil every 10,000 km or 6 months for Indian road conditions.",
|
52 |
+
"Inspect brakes regularly, especially during monsoon seasons.",
|
53 |
+
"Keep your car clean to prevent rust in humid climates."
|
54 |
+
]
|
55 |
+
|
56 |
+
# Tool: DuckDuckGo web search with retry and structured output
|
57 |
+
def web_search_duckduckgo(query: str, max_results: int = 5, max_retries: int = 2):
|
58 |
+
cache_key = query.lower()
|
59 |
+
if cache_key in search_cache:
|
60 |
+
cached_time, cached_results = search_cache[cache_key]
|
61 |
+
if time.time() - cached_time < cache_timeout:
|
62 |
+
print(f"Using cached results for: {query}")
|
63 |
+
return cached_results
|
64 |
+
|
65 |
results = []
|
66 |
+
for attempt in range(max_retries):
|
67 |
+
try:
|
68 |
+
with DDGS() as ddgs:
|
69 |
+
for r in ddgs.text(query, region="in-en", safesearch="Moderate", max_results=max_results):
|
70 |
+
results.append({"title": r['title'], "url": r['href']})
|
71 |
+
formatted_results = "\n\n".join(f"- {r['title']}\n {r['url']}" for r in results)
|
72 |
+
search_cache[cache_key] = (time.time(), formatted_results)
|
73 |
+
return formatted_results
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Search attempt {attempt + 1} failed: {str(e)}")
|
76 |
+
if attempt + 1 == max_retries:
|
77 |
+
return f"⚠️ Web search failed after {max_retries} attempts: {str(e)}"
|
78 |
+
time.sleep(1)
|
79 |
|
80 |
# ReAct agent response with thought process
|
81 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p, vehicle_profile):
|
82 |
try:
|
83 |
# Initialize messages with ReAct system prompt
|
84 |
react_prompt = (
|
85 |
f"{system_message}\n\n"
|
86 |
"You are using the ReAct framework. For each user query, follow these steps:\n"
|
87 |
+
"1. **Thought**: Reason about the query and decide the next step. Check the diagnostics database first for known issues. For location-specific queries (e.g., garages, repair shops) or real-time data (e.g., pricing, availability), prioritize web search. For community questions, check the Q&A store.\n"
|
88 |
+
"2. **Observation**: Note relevant information (e.g., user input, vehicle profile, tool results, or context).\n"
|
89 |
+
"3. **Action**: Choose an action: 'search' (web search), 'respond' (final answer), 'clarify' (ask for details), 'add_qa' (add to Q&A store), or 'get_qa' (retrieve Q&A).\n"
|
90 |
+
"Format your response as a valid JSON object with 'thought', 'observation', 'action', and optionally 'search_query', 'response', or 'qa_content'. Example:\n"
|
91 |
"{\n"
|
92 |
" \"thought\": \"User asks for garages in Dehradun, need to search.\",\n"
|
93 |
" \"observation\": \"Location: Dehradun\",\n"
|
94 |
" \"action\": \"search\",\n"
|
95 |
" \"search_query\": \"car repair shops Dehradun\"\n"
|
96 |
"}\n"
|
97 |
+
f"User vehicle profile: {json.dumps(vehicle_profile)}\n"
|
98 |
+
"Use the search tool for locations, prices, or real-time data. Ensure valid JSON."
|
99 |
)
|
100 |
messages = [{"role": "system", "content": react_prompt}]
|
101 |
|
102 |
+
# Add history
|
103 |
for msg in history:
|
104 |
role = msg.get("role")
|
105 |
content = msg.get("content")
|
|
|
124 |
"ac not cooling", "car breakdown", "pickup and drop car service"
|
125 |
]
|
126 |
|
127 |
+
# Check diagnostics database
|
128 |
+
if vehicle_profile.get("make_model") and any(kw in message.lower() for kw in diagnostics_db.get(vehicle_profile["make_model"], {})):
|
129 |
+
for issue, details in diagnostics_db[vehicle_profile["make_model"]].items():
|
130 |
+
if issue in message.lower():
|
131 |
+
response = (
|
132 |
+
f"**Diagnosed Issue**: {issue}\n"
|
133 |
+
f"- **Possible Causes**: {', '.join(details['causes'])}\n"
|
134 |
+
f"- **Solutions**: {', '.join(details['solutions'])}\n"
|
135 |
+
f"- **Severity**: {details['severity']}\n"
|
136 |
+
f"Would you like to search for garages to address this issue or learn more?"
|
137 |
+
)
|
138 |
+
yield response
|
139 |
+
return
|
140 |
+
|
141 |
+
# Check for community Q&A keywords
|
142 |
+
if any(kw in message.lower() for kw in ["community", "forum", "discussion", "share advice", "ask community"]):
|
143 |
+
if "post" in message.lower() or "share" in message.lower():
|
144 |
+
community_qa.append({"question": message, "answers": []})
|
145 |
+
yield "Your question has been posted to the community! Check back for answers."
|
146 |
+
return
|
147 |
+
elif "view" in message.lower() or "see" in message.lower():
|
148 |
+
if community_qa:
|
149 |
+
response = "Community Q&A:\n" + "\n".join(
|
150 |
+
f"Q: {qa['question']}\nA: {', '.join(qa['answers']) or 'No answers yet'}"
|
151 |
+
for qa in community_qa
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
response = "No community questions yet. Post one with 'share' or 'post'!"
|
155 |
+
yield response
|
156 |
+
return
|
157 |
+
|
158 |
# Check for trigger keywords to directly perform search
|
159 |
if any(keyword in message.lower() for keyword in trigger_keywords):
|
160 |
print(f"Trigger keyword detected in query: {message}")
|
161 |
search_results = web_search_duckduckgo(message)
|
162 |
print(f"Search Results:\n{search_results}")
|
163 |
+
final_response = f"🔍 Here are some results I found:\n\n{search_results}\n\n**Tip**: {maintenance_tips[hash(message) % len(maintenance_tips)]}"
|
164 |
+
for i in range(0, len(final_response), 10):
|
165 |
yield final_response[:i + 10]
|
166 |
return
|
167 |
|
168 |
# ReAct loop (up to 3 iterations)
|
169 |
max_iterations = 3
|
170 |
+
max_json_retries = 2
|
171 |
current_response = ""
|
172 |
for iteration in range(max_iterations):
|
173 |
print(f"\n--- ReAct Iteration {iteration + 1} ---")
|
174 |
|
175 |
# Call LLM with current messages
|
176 |
for retry in range(max_json_retries):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
try:
|
178 |
+
completion = client.chat.completions.create(
|
179 |
+
model=MODEL_NAME,
|
180 |
+
messages=messages,
|
181 |
+
temperature=temperature,
|
182 |
+
max_completion_tokens=max_tokens,
|
183 |
+
top_p=top_p,
|
184 |
+
stream=False,
|
185 |
+
)
|
186 |
+
raw_response = completion.choices[0].message.content
|
187 |
|
188 |
+
# Parse LLM response
|
189 |
+
try:
|
190 |
+
react_step = json.loads(raw_response)
|
191 |
+
thought = react_step.get("thought", "")
|
192 |
+
observation = react_step.get("observation", "")
|
193 |
+
action = react_step.get("action", "")
|
194 |
+
|
195 |
+
# Log to console
|
196 |
+
print("Thought:", thought)
|
197 |
+
print("Observation:", observation)
|
198 |
+
print("Action:", action)
|
199 |
+
break
|
200 |
+
except json.JSONDecodeError:
|
201 |
+
print(f"Error: LLM response is not valid JSON (attempt {retry + 1}/{max_json_retries}).")
|
202 |
+
if retry + 1 == max_json_retries:
|
203 |
+
print("Max retries reached. Treating as direct response.")
|
204 |
+
react_step = {"response": raw_response, "action": "respond"}
|
205 |
+
thought = "N/A (Invalid JSON)"
|
206 |
+
observation = "N/A (Invalid JSON)"
|
207 |
+
action = "respond"
|
208 |
+
else:
|
209 |
+
messages.append({
|
210 |
+
"role": "system",
|
211 |
+
"content": "Previous response was not valid JSON. Please provide a valid JSON object with 'thought', 'observation', 'action', and optionally 'search_query', 'response', or 'qa_content'."
|
212 |
+
})
|
213 |
+
except Exception as e:
|
214 |
+
print(f"LLM call failed (attempt {retry + 1}/{max_json_retries}): {str(e)}")
|
215 |
if retry + 1 == max_json_retries:
|
216 |
+
react_step = {"response": f"⚠️ Failed to process query: {str(e)}", "action": "respond"}
|
217 |
+
thought = "N/A (LLM error)"
|
218 |
+
observation = "N/A (LLM error)"
|
|
|
219 |
action = "respond"
|
220 |
else:
|
221 |
+
time.sleep(1)
|
|
|
|
|
|
|
222 |
|
223 |
# Handle action
|
224 |
if action == "search":
|
|
|
234 |
|
235 |
elif action == "respond":
|
236 |
final_response = react_step.get("response", raw_response)
|
237 |
+
current_response = f"{final_response}\n\n**Tip**: {maintenance_tips[hash(message) % len(maintenance_tips)]}"
|
238 |
print(f"Final Response:\n{current_response}")
|
239 |
break
|
240 |
elif action == "clarify":
|
|
|
242 |
messages.append({"role": "assistant", "content": raw_response})
|
243 |
current_response = clarification
|
244 |
print(f"Clarification Request:\n{current_response}")
|
245 |
+
elif action == "add_qa":
|
246 |
+
qa_content = react_step.get("qa_content", message)
|
247 |
+
community_qa.append({"question": qa_content, "answers": []})
|
248 |
+
current_response = "Your question has been posted to the community! Check back for answers."
|
249 |
+
print(f"Community Q&A Added:\n{qa_content}")
|
250 |
+
break
|
251 |
+
elif action == "get_qa":
|
252 |
+
if community_qa:
|
253 |
+
current_response = "Community Q&A:\n" + "\n".join(
|
254 |
+
f"Q: {qa['question']}\nA: {', '.join(qa['answers']) or 'No answers yet'}"
|
255 |
+
for qa in community_qa
|
256 |
+
)
|
257 |
+
else:
|
258 |
+
current_response = "No community questions yet. Post one with 'share' or 'post'!"
|
259 |
+
print(f"Community Q&A Retrieved:\n{current_response}")
|
260 |
+
break
|
261 |
else:
|
262 |
print("Unknown action, continuing to next iteration.")
|
263 |
messages.append({"role": "assistant", "content": raw_response})
|
|
|
271 |
print(error_msg)
|
272 |
yield error_msg
|
273 |
|
274 |
+
# Gradio interface with vehicle profile
|
275 |
+
with gr.Blocks(title="CarMaa - India's AI Car Doctor") as demo:
|
276 |
+
gr.Markdown("# CarMaa - India's AI Car Doctor")
|
277 |
+
gr.Markdown("Your trusted AI for car diagnostics, garage searches, and community advice.")
|
278 |
+
|
279 |
+
# Vehicle profile inputs
|
280 |
+
with gr.Row():
|
281 |
+
make_model = gr.Textbox(label="Vehicle Make and Model (e.g., Maruti Alto)", placeholder="Enter your car's make and model")
|
282 |
+
year = gr.Textbox(label="Year", placeholder="Enter the year of manufacture")
|
283 |
+
city = gr.Textbox(label="City", placeholder="Enter your city")
|
284 |
+
vehicle_profile = gr.State(value={"make_model": "", "year": "", "city": ""})
|
285 |
+
|
286 |
+
# Update vehicle profile
|
287 |
+
def update_vehicle_profile(make_model, year, city):
|
288 |
+
return {"make_model": make_model, "year": year, "city": city}
|
289 |
+
|
290 |
+
gr.Button("Save Vehicle Profile").click(
|
291 |
+
fn=update_vehicle_profile,
|
292 |
+
inputs=[make_model, year, city],
|
293 |
+
outputs=vehicle_profile
|
294 |
+
)
|
295 |
+
|
296 |
+
# Chat interface
|
297 |
+
chatbot = gr.ChatInterface(
|
298 |
+
fn=respond,
|
299 |
+
additional_inputs=[
|
300 |
+
gr.Textbox(value=(
|
301 |
+
"You are CarMaa, a highly intelligent and trusted AI Car Doctor trained on comprehensive automobile data, diagnostics, "
|
302 |
+
"and service records with specialized knowledge of Indian vehicles, road conditions, and market pricing. Your role is to "
|
303 |
+
"guide car owners with accurate insights, including service intervals, symptoms, estimated repair costs, garage locations, "
|
304 |
+
"climate effects, and fuel-efficiency tips. Personalize answers by vehicle details and city. Engage users as a community by "
|
305 |
+
"allowing Q&A posts and sharing maintenance tips."
|
306 |
+
), label="System message"),
|
307 |
+
gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens"),
|
308 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
309 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
310 |
+
vehicle_profile
|
311 |
+
],
|
312 |
+
type="messages"
|
313 |
+
)
|
314 |
|
315 |
if __name__ == "__main__":
|
316 |
demo.launch()
|