roman
commited on
Commit
·
cdf6c2a
1
Parent(s):
64043f0
clean code
Browse files
app.py
CHANGED
@@ -140,57 +140,57 @@ def imagename(str):
|
|
140 |
return str.split('/')[-1]
|
141 |
|
142 |
|
143 |
-
def read_image(im_path, YAML_FILE, path_to_model, THR=0.5, dim=(500, 500),
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
|
195 |
def process_one_image(img, im_name, YAML_FILE, path_to_model, THR=0.5, dim=(500, 500),
|
196 |
cat_lst=['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']):
|
@@ -246,7 +246,9 @@ def process_one_image(img, im_name, YAML_FILE, path_to_model, THR=0.5, dim=(500,
|
|
246 |
|
247 |
return img, digits_out_sorted
|
248 |
|
249 |
-
ROOT_FOLDER = '/home/roman/PycharmProjects/streamlit/digits/'
|
|
|
|
|
250 |
|
251 |
train_dct1 = {
|
252 |
'10cl':
|
@@ -292,17 +294,17 @@ if __name__ == '__main__':
|
|
292 |
YAML_FILE = 'Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml'
|
293 |
# YAML_FILE = 'COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml'
|
294 |
|
295 |
-
DATASET_NAME = model_name
|
296 |
|
297 |
-
val_dataset_name = DATASET_NAME + "_val_" + str(random.randint(1, 1000))
|
298 |
|
299 |
-
num_classes = '10cl' # 'poteklina' # '1cl'
|
300 |
-
dataset = '16' #
|
301 |
|
302 |
# MetadataCatalog.get(val_dataset_name).thing_classes = train_dct1['10cl']['cat_lst'] #["person", "dog"]
|
303 |
-
register_coco_instances(val_dataset_name, {}, train_dct1[num_classes]['val'][dataset]['json'],
|
304 |
-
|
305 |
-
dataset_dicts = DatasetCatalog.get(val_dataset_name)
|
306 |
|
307 |
filenames = []
|
308 |
uploaded_files = st.file_uploader("Choose a images", accept_multiple_files=True, type=["png", "jpg", "jpeg"])
|
@@ -351,4 +353,4 @@ if __name__ == '__main__':
|
|
351 |
st.write(file_details)
|
352 |
|
353 |
st.write('Точність визначення = ', num_ok /(num_ok + num_nok) * 100, ' %')
|
354 |
-
st.write('NOK = ', num_nok, 'OK = ', num_ok)
|
|
|
140 |
return str.split('/')[-1]
|
141 |
|
142 |
|
143 |
+
# def read_image(im_path, YAML_FILE, path_to_model, THR=0.5, dim=(500, 500),
|
144 |
+
# cat_lst=['pomeranc', 'poteklina']):
|
145 |
+
#
|
146 |
+
# out_dct = {}
|
147 |
+
#
|
148 |
+
# im_name = imagename(im_path)
|
149 |
+
# # img = cv2.imread(os.path.join(root_path, d["file_name"]))
|
150 |
+
# img = cv2.imread(im_path)
|
151 |
+
# out_dct[im_name] = inference_2(image=img, path_to_model=path_to_model,
|
152 |
+
# dataset_name=None, YAML_FILE=YAML_FILE,
|
153 |
+
# cat_lst=cat_lst, thr=THR)
|
154 |
+
# print(im_path)
|
155 |
+
# # print(os.path.join(im_path, d["file_name"]))
|
156 |
+
# labels_list = []
|
157 |
+
# boxes = []
|
158 |
+
# name_dict = {}
|
159 |
+
#
|
160 |
+
# for i in range(len(out_dct[im_name]['cl_lst'])):
|
161 |
+
# box = out_dct[im_name]['box_lst'][i]
|
162 |
+
# box = [int(i) for i in box]
|
163 |
+
# label = out_dct[im_name]['cl_lst'][i]
|
164 |
+
# scores = out_dct[im_name]['scores'][i]
|
165 |
+
# # print(label, scores)
|
166 |
+
# # print(box)
|
167 |
+
# labels_list.append(label)
|
168 |
+
# boxes.append(box[0])
|
169 |
+
#
|
170 |
+
# cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1)
|
171 |
+
# cv2.putText(img, label, (box[0], box[3]), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 4)
|
172 |
+
# # cv2.putText(img, str(int(scores*100)), (box[0], box[3]),cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
173 |
+
# # print(d["file_name"])
|
174 |
+
# # print(labels_list)
|
175 |
+
#
|
176 |
+
# for num, name in zip(boxes, labels_list):
|
177 |
+
# name_dict[num] = name
|
178 |
+
#
|
179 |
+
# # print(name_dict)
|
180 |
+
#
|
181 |
+
# od = collections.OrderedDict(sorted(name_dict.items()))
|
182 |
+
# digits_out_sorted = []
|
183 |
+
# for k, v in od.items():
|
184 |
+
# digits_out_sorted.append(v)
|
185 |
+
#
|
186 |
+
# # print(od)
|
187 |
+
#
|
188 |
+
# print(digits_out_sorted)
|
189 |
+
#
|
190 |
+
# # resized = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
|
191 |
+
# im_output_path = ROOT_FOLDER + 'output_images/' + im_path.split('/')[-1]
|
192 |
+
# print(im_output_path)
|
193 |
+
# cv2.imwrite(im_output_path, img)
|
194 |
|
195 |
def process_one_image(img, im_name, YAML_FILE, path_to_model, THR=0.5, dim=(500, 500),
|
196 |
cat_lst=['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']):
|
|
|
246 |
|
247 |
return img, digits_out_sorted
|
248 |
|
249 |
+
# ROOT_FOLDER = '/home/roman/PycharmProjects/streamlit/digits/'
|
250 |
+
|
251 |
+
ROOT_FOLDER = './'
|
252 |
|
253 |
train_dct1 = {
|
254 |
'10cl':
|
|
|
294 |
YAML_FILE = 'Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml'
|
295 |
# YAML_FILE = 'COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml'
|
296 |
|
297 |
+
# DATASET_NAME = model_name
|
298 |
|
299 |
+
# val_dataset_name = DATASET_NAME + "_val_" + str(random.randint(1, 1000))
|
300 |
|
301 |
+
# num_classes = '10cl' # 'poteklina' # '1cl'
|
302 |
+
# dataset = '16' #
|
303 |
|
304 |
# MetadataCatalog.get(val_dataset_name).thing_classes = train_dct1['10cl']['cat_lst'] #["person", "dog"]
|
305 |
+
# register_coco_instances(val_dataset_name, {}, train_dct1[num_classes]['val'][dataset]['json'],
|
306 |
+
# train_dct1[num_classes]['val'][dataset]['data'])
|
307 |
+
# dataset_dicts = DatasetCatalog.get(val_dataset_name)
|
308 |
|
309 |
filenames = []
|
310 |
uploaded_files = st.file_uploader("Choose a images", accept_multiple_files=True, type=["png", "jpg", "jpeg"])
|
|
|
353 |
st.write(file_details)
|
354 |
|
355 |
st.write('Точність визначення = ', num_ok /(num_ok + num_nok) * 100, ' %')
|
356 |
+
st.write('NOK = ', num_nok, 'OK = ', num_ok)
|