# %% [markdown] # # 🖼️ Tiny Stable Diffusion (CPU Version) # **0.9GB Model | No GPU Required** # %% [markdown] # ## 1. Install Requirements pip install torch import torch from diffusers import StableDiffusionPipeline from huggingface_hub import snapshot_download from PIL import Image import gradio as gr import os # Force CPU mode torch.backends.quantized.engine = 'qnnpack' # ARM optimization device = torch.device("cpu") # %% [markdown] # ## 2. Download Model (0.9GB) model_path = "./tiny_model" os.makedirs(model_path, exist_ok=True) # Download with progress bar print("Downloading model... (this may take a few minutes)") snapshot_download( repo_id="nota-ai/bk-sdm-tiny", local_dir=model_path, ignore_patterns=["*.bin", "*.fp16*", "*.onnx"], local_dir_use_symlinks=False ) # Verify download if not os.listdir(model_path): raise ValueError("Model failed to download! Check internet connection") else: print("✔ Model downloaded successfully") # %% [markdown] # ## 3. Load Optimized Pipeline print("Loading model...") pipe = StableDiffusionPipeline.from_pretrained( model_path, torch_dtype=torch.float32, safety_checker=None, requires_safety_checker=False ).to(device) # Memory optimizations pipe.enable_attention_slicing() pipe.unet = torch.compile(pipe.unet) # Compile for faster inference # %% [markdown] # ## 4. Generation Function def generate_image(prompt, steps=15, seed=42): generator = torch.Generator(device).manual_seed(seed) print(f"Generating: {prompt}") image = pipe( prompt, num_inference_steps=steps, guidance_scale=7.0, generator=generator, width=256, height=256 ).images[0] return image # %% [markdown] # ## 5. Gradio Interface with gr.Blocks(title="Tiny Diffusion (CPU)", css="footer {visibility: hidden}") as demo: gr.Markdown("## 🎨 CPU Image Generator (0.9GB Model)") with gr.Row(): prompt = gr.Textbox(label="Prompt", value="a cute robot wearing a hat", placeholder="Describe your image...") with gr.Row(): steps = gr.Slider(5, 25, value=15, label="Steps") seed = gr.Number(42, label="Seed") with gr.Row(): generate_btn = gr.Button("Generate", variant="primary") with gr.Row(): output = gr.Image(label="Output", width=256, height=256) generate_btn.click( fn=generate_image, inputs=[prompt, steps, seed], outputs=output ) # %% [markdown] # ## 6. Launch App print("Starting interface...") demo.launch( server_name="0.0.0.0", server_port=7860, show_error=True )