Spaces:
Sleeping
Sleeping
Updated app with custom DeBERTaV3 model
Browse files- __pycache__/models.cpython-310.pyc +0 -0
- app.py +29 -62
- models.py +37 -0
- requirements.txt +4 -1
__pycache__/models.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
app.py
CHANGED
@@ -1,63 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
|
5 |
+
from models import DebertaV3ForCustomClassification
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
8 |
+
's986103/DebertaV3ForCustomClassification')
|
9 |
+
|
10 |
+
model = DebertaV3ForCustomClassification.from_pretrained(
|
11 |
+
's986103/DebertaV3ForCustomClassification')
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
|
15 |
+
def classify_text(text):
|
16 |
+
inputs = tokenizer(text, return_tensors="pt",
|
17 |
+
truncation=True, padding=True)
|
18 |
+
with torch.no_grad():
|
19 |
+
logits = model(**inputs)
|
20 |
+
prediction = torch.argmax(logits, dim=1).item()
|
21 |
+
return prediction
|
22 |
+
|
23 |
+
|
24 |
+
iface = gr.Interface(fn=classify_text,
|
25 |
+
inputs="text",
|
26 |
+
outputs="label",
|
27 |
+
description="自動作文評分")
|
28 |
+
|
29 |
+
# 啟動 UI
|
30 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import DebertaV2Model, DebertaV2PreTrainedModel
|
4 |
+
|
5 |
+
|
6 |
+
class DebertaV3ForCustomClassification(DebertaV2PreTrainedModel):
|
7 |
+
def __init__(self, config):
|
8 |
+
super().__init__(config)
|
9 |
+
self.deberta = DebertaV2Model(config) # 使用 DebertaV2 作为基础模型
|
10 |
+
self.dropout = nn.Dropout(0.1) # 添加一个 dropout 层
|
11 |
+
self.classifier = nn.Linear(
|
12 |
+
config.hidden_size, config.num_labels) # fully connected 层
|
13 |
+
self.config = config # 保存配置
|
14 |
+
|
15 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None, labels=None):
|
16 |
+
# 获取 DeBERTaV3 的输出
|
17 |
+
outputs = self.deberta(
|
18 |
+
input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
19 |
+
|
20 |
+
# 使用 Mean Pooling
|
21 |
+
# [batch_size, seq_len, hidden_size]
|
22 |
+
last_hidden_state = outputs.last_hidden_state
|
23 |
+
# [batch_size, hidden_size]
|
24 |
+
pooled_output = torch.mean(last_hidden_state, dim=1)
|
25 |
+
|
26 |
+
# Dropout and Fully Connected Layer
|
27 |
+
pooled_output = self.dropout(pooled_output)
|
28 |
+
logits = self.classifier(pooled_output) # [batch_size, num_labels]
|
29 |
+
|
30 |
+
# 如果提供了标签,则计算损失
|
31 |
+
loss = None
|
32 |
+
if labels is not None:
|
33 |
+
loss_fct = nn.CrossEntropyLoss()
|
34 |
+
loss = loss_fct(
|
35 |
+
logits.view(-1, self.config.num_labels), labels.view(-1))
|
36 |
+
|
37 |
+
return (loss, logits) if loss is not None else logits
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
gradio
|
3 |
+
torch
|
4 |
+
transformers
|