import gradio as gr import torch from transformers import AutoTokenizer from models import DebertaV3ForCustomClassification tokenizer = AutoTokenizer.from_pretrained( 's986103/DebertaV3ForCustomClassification') model = DebertaV3ForCustomClassification.from_pretrained( 's986103/DebertaV3ForCustomClassification') model.eval() def classify_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024) with torch.no_grad(): logits = model(**inputs) prediction = torch.argmax(logits, dim=-1).item() + 1 return prediction # 自定义 CSS 样式 custom_css = """ #input_textbox textarea { border: 2px solid #1E90FF !important; /* 设置输入框边框颜色为蓝色 */ border-radius: 10px !important; /* 设置边框圆角 */ } #output_textbox textarea { border: 2px solid #FFA500 !important; /* 设置输出框边框颜色为橘色 */ border-radius: 10px !important; /* 设置边框圆角 */ font-size: 24px !important; /* 设置字体大小为24px */ text-align: center !important; /* 将文本居中对齐 */ display: flex; justify-content: center; align-items: center; } """ # 定义 Gradio 接口 iface = gr.Interface( fn=classify_text, inputs=gr.Textbox(label="請輸入文章", elem_id="input_textbox"), outputs=gr.Textbox(label="評分結果(1-6)", elem_id="output_textbox"), description="自動作文評分", css=custom_css # 将自定义 CSS 添加到 Gradio 应用 ) # 啟動 UI iface.launch()