Spaces:
Runtime error
Runtime error
Sagar Desai
commited on
Commit
·
7675310
1
Parent(s):
39a7e3d
corrected the page seq
Browse files- Name_Generator.py +59 -0
Name_Generator.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
import streamlit as st
|
4 |
+
import torch
|
5 |
+
from network.network import NeuralNetwork
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
# Page title
|
9 |
+
st.set_page_config(page_title='Name Generator')
|
10 |
+
st.title('Name Generator')
|
11 |
+
|
12 |
+
# Select Model - drop down
|
13 |
+
model_list = [
|
14 |
+
'Random model',
|
15 |
+
'Bigram model'
|
16 |
+
]
|
17 |
+
model_name = st.selectbox('Select an example query:', model_list)
|
18 |
+
|
19 |
+
# Number of outputs - input field
|
20 |
+
num_results = st.number_input("Number of Names to be Generated", min_value=1, max_value=50)
|
21 |
+
|
22 |
+
# Process
|
23 |
+
# get weights
|
24 |
+
with st.form('myform', clear_on_submit=True):
|
25 |
+
|
26 |
+
submitted = st.form_submit_button('Submit')
|
27 |
+
|
28 |
+
if submitted:
|
29 |
+
# get current path
|
30 |
+
get_cwd = os.getcwd()
|
31 |
+
project_dir = get_cwd
|
32 |
+
models_path = os.path.join(project_dir, 'models')
|
33 |
+
|
34 |
+
if model_name == 'Bigram model':
|
35 |
+
w = torch.load(os.path.join(models_path, 'bigram-USA.pt'))
|
36 |
+
elif model_name == 'Random model':
|
37 |
+
w = torch.ones(27,27) * 0.01
|
38 |
+
|
39 |
+
for i in range(num_results):
|
40 |
+
ix = 0
|
41 |
+
name=""
|
42 |
+
y = torch.Generator().manual_seed(2147483647)
|
43 |
+
while True:
|
44 |
+
nn = NeuralNetwork(50, 2147483647)
|
45 |
+
|
46 |
+
xenc = F.one_hot(torch.tensor([ix]), num_classes=27).float() # input to the network one hot encodding
|
47 |
+
logits = xenc @ w
|
48 |
+
counts = logits.exp()
|
49 |
+
probs = counts / counts.sum(1, keepdims=True)
|
50 |
+
|
51 |
+
ix = torch.multinomial(probs, num_samples=1, replacement=True).item()
|
52 |
+
name += nn.itos[ix]
|
53 |
+
if nn.itos[ix] ==".":
|
54 |
+
break
|
55 |
+
st.write(name)
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|