DavidCombei commited on
Commit
95e4f8f
·
verified ·
1 Parent(s): e066769

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ from transformers import AutoFeatureExtractor, Wav2Vec2Model
3
+ import torch
4
+ import librosa
5
+ import numpy as np
6
+ from sklearn.linear_model import LogisticRegression
7
+ import gradio as gr
8
+ import os
9
+ import torch.nn.functional as F
10
+ from scipy.special import expit
11
+
12
+
13
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
14
+
15
+ class CustomWav2Vec2Model(Wav2Vec2Model):
16
+ def __init__(self, config):
17
+ super().__init__(config)
18
+ self.encoder.layers = self.encoder.layers[:9]
19
+
20
+ truncated_model = CustomWav2Vec2Model.from_pretrained("facebook/wav2vec2-xls-r-2b")
21
+
22
+ class HuggingFaceFeatureExtractor:
23
+ def __init__(self, model, feature_extractor_name):
24
+ self.device = device
25
+ self.feature_extractor = AutoFeatureExtractor.from_pretrained(feature_extractor_name)
26
+ self.model = model
27
+ self.model.eval()
28
+ self.model.to(self.device)
29
+
30
+ def __call__(self, audio, sr):
31
+ inputs = self.feature_extractor(
32
+ audio,
33
+ sampling_rate=sr,
34
+ return_tensors="pt",
35
+ padding=True,
36
+ )
37
+ inputs = {k: v.to(self.device) for k, v in inputs.items()}
38
+ with torch.no_grad():
39
+ outputs = self.model(**inputs, output_hidden_states=True)
40
+ return outputs.hidden_states[9]
41
+
42
+ FEATURE_EXTRACTOR = HuggingFaceFeatureExtractor(truncated_model, "facebook/wav2vec2-xls-r-2b")
43
+ classifier,scaler, thresh = joblib.load('logreg_margin_pruning_ALL_with_scaler+threshold.joblib')
44
+
45
+ def segment_audio(audio, sr, segment_duration):
46
+ segment_samples = int(segment_duration * sr)
47
+ total_samples = len(audio)
48
+ segments = [audio[i:i + segment_samples] for i in range(0, total_samples, segment_samples)]
49
+ return segments
50
+
51
+ def process_audio(input_data, segment_duration=10):
52
+ audio, sr = librosa.load(input_data, sr=16000)
53
+ if len(audio.shape) > 1:
54
+ audio = audio[0]
55
+ segments = segment_audio(audio, sr, segment_duration)
56
+ segment_predictions = []
57
+ output_lines = []
58
+ eer_threshold = thresh - 5e-3 # small margin error due to feature extractor space differences
59
+ for idx, segment in enumerate(segments):
60
+ features = FEATURE_EXTRACTOR(segment, sr)
61
+ features_avg = torch.mean(features, dim=1).cpu().numpy()
62
+ features_avg = features_avg.reshape(1, -1)
63
+ decision_score = classifier.decision_function(features_avg)
64
+ decision_score_scaled = scaler.transform(decision_score.reshape(-1, 1)).flatten()
65
+ decision_value = decision_score_scaled[0]
66
+ pred = 1 if decision_value >= eer_threshold else 0
67
+ if pred == 1:
68
+ confidence_percentage = expit(decision_score).item()
69
+ else:
70
+ confidence_percentage = 1 - expit(decision_score).item()
71
+ segment_predictions.append(pred)
72
+ line = f"Segment {idx + 1}: {'Real' if pred == 1 else 'Fake'} (Confidence: {np.round(confidence_percentage*100, 2)}%)"
73
+ output_lines.append(line)
74
+ overall_prediction = 1 if sum(segment_predictions) > (len(segment_predictions) / 2) else 0
75
+ overall_line = f"Overall Prediction: {'Real' if overall_prediction == 1 else 'Fake'}"
76
+ output_str = overall_line + "\n" + "\n".join(output_lines)
77
+ return output_str
78
+
79
+ def gradio_interface(audio):
80
+ if audio:
81
+ return process_audio(audio)
82
+ else:
83
+ return "please upload an audio file"
84
+
85
+ interface = gr.Interface(
86
+ fn=gradio_interface,
87
+ inputs=[gr.Audio(type="filepath", label="Upload Audio")],
88
+ outputs="text",
89
+ title="SOL2 Audio Deepfake Detection Demo",
90
+ description="Upload an audio file to check if it's AI-generated",
91
+ )
92
+
93
+ interface.launch(share=True)
94
+ #
95
+ #print(process_audio('SSL_scripts/1.wav'))