Spaces:
Running
Running
File size: 5,324 Bytes
02170c9 25c0796 02170c9 25c0796 02170c9 2f0dda8 02170c9 a36fa45 fa82595 02170c9 fa82595 02170c9 fa82595 9891cdb 02170c9 27c8f5a 999bc9b 02170c9 27c8f5a 999bc9b 02170c9 27c8f5a 9891cdb 27c8f5a 9891cdb 02170c9 27c8f5a 02170c9 fa82595 02170c9 a36fa45 fa82595 02170c9 fa82595 02170c9 a36fa45 02170c9 a36fa45 02170c9 a76406f 24191cc a76406f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
title: README
emoji: 🦀
colorFrom: green
colorTo: gray
sdk: static
pinned: true
license: bsd-3-clause
short_description: Probabilistic modeling of single-cell omics data
---
# **scvi-tools**
Welcome to the **scvi-tools** organization. We provide state-of-the-art probabilistic models tailored for analyzing single-cell omics data. Those enable researchers to gain biological insights with scalable algorithms.
These models provide a consistent API making it easy to integrate it into your current analysis pipeline. **scvi-tools** is part of [scverse](https://scverse.org).
This is an open science initiative, please contribute your own models to allow the single-cell community to leverage your reference datasets. Learn how to upload your model in our [HubModel tutorials](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/hub/scvi_hub_upload_and_large_files.html).
---
## **Model Overview**
scvi-tools offers a comprehensive suite of models designed to address various challenges in single-cell data analysis.
### **Current HubModels**
- **[scVI](https://docs.scvi-tools.org/en/stable/user_guide/models/scvi.html)**:
- A variational autoencoder for dimensionality reduction, batch correction, and clustering.
- See all models in [scVI collection](https://huggingface.co/collections/scvi-tools/scvi-673c2c0f2bf4163ef14d018d)
- **[scANVI](https://docs.scvi-tools.org/en/stable/user_guide/models/scanvi.html)**:
- A semi-supervised model designed for label prediction, especially in cases of partially labeled data.
- See all models at [scANVI collection](https://huggingface.co/collections/scvi-tools/scanvi-673c3a4aabddf849496e9079)
- **[totalVI](https://docs.scvi-tools.org/en/stable/user_guide/models/totalvi.html)**:
- A multi-modal model for joint analysis of RNA and protein data, additionally allowing imputation of missing protein data.
- See all models in [totalVI collection](https://huggingface.co/collections/scvi-tools/totalvi-673c3d67e2882005a1d180c1)
- **[DestVI](https://docs.scvi-tools.org/en/stable/user_guide/models/destvi.html)**:
- A deconvolution model for prediction of single-cell profiles given subcellular spatial transcriptomics data. We provide here pre-trained single cell models (CondSCVI).
- See all models in [DestVI collection](https://huggingface.co/collections/scvi-tools/destvi-673c3dbf537347953810a215)
- **[Stereoscope](https://docs.scvi-tools.org/en/stable/user_guide/models/stereoscope.html)**:
- A deconvolution model for prediction of cell-type composition given subcellular spatial transcriptomics data. We provide here pre-trained single cell models.
- See all models in [Stereoscope collection](https://huggingface.co/collections/scvi-tools/stereoscope-673c3ddcf1f9f7542b8819d6)
Explore the full list of models in scvi-tools in our **[user guide](https://docs.scvi-tools.org/en/stable/user_guide/index.html)**.
Please reach out on [discourse](https://discourse.scverse.org), if you want to add additional models to HuggingFace.
---
## **Key Applications**
These models have been applied to a wide array of biological questions, such as:
- Batch correction across experiments.
- Identification of rare cell populations.
- Multi-modal integration of single-cell RNA, and protein data.
- Differential expression and abundance analysis in disease contexts.
For hands-on examples, refer to our **[tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)**.
Learn how to apply scvi-hub for analysis of query datasets in our [HLCA tutorial](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scrna/query_hlca_knn.html).
Discover how to efficiently access CELLxGENE census using our minified models in our [CELLxGENE census tutorial](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/hub/cellxgene_census_model.html).
---
## **Publications**
- **[Original scvi-tools Paper](https://www.nature.com/articles/s41587-021-01206-w)**:
- Published in *Nature Biotechnology*, this paper introduces the foundational principles of scvi-tools.
- **[scvi-hub Preprint](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v1)**:
- This manuscript showcases real-world applications of scvi-hub in diverse biological contexts and provides building blocks
- to apply these models in your own research
---
## **How to Get Started**
1. Visit our **[official documentation](https://docs.scvi-tools.org)** to get started with installation and explore our API.
2. Follow our **[tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)** for step-by-step guides on using scvi-tools effectively.
3. Dive into our **[models](https://docs.scvi-tools.org/en/stable/user_guide/index.html)** to see how to apply them to your single-cell analysis.
---
---
## **Contact**
- Website: [https://scvi-tools.org](https://scvi-tools.org)
- GitHub: [https://github.com/scverse/scvi-tools](https://github.com/scverse/scvi-tools)
- Tutorials: [scvi-tools Tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)
- User questions: [Discourse](https://discourse.scverse.org)
<!---
- **[MultiVI](https://docs.scvi-tools.org/en/stable/user_guide/models/multivi.html)**:
- A multi-modal model for joint analysis of RNA, ATAC and protein data, enabling integrative insights from diverse omics data.
--> |