Spaces:
Paused
Paused
File size: 5,147 Bytes
f8b3075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
from utils_violin_transcript import PretrainedModel
from json import load as json_load
from huggingface_hub import hf_hub_download
from torch import device as Device
from torch.cuda import is_available as cuda_is_available
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
from librosa import load as librosa_load, piptrack, hz_to_midi
from mido import MidiFile, MidiTrack, Message, MetaMessage, bpm2tempo
from basic_pitch.inference import predict as basic_pitch_predict
from numpy import argmax as np_argmax, isnan as np_isnan
device = Device("cuda" if cuda_is_available() else "cpu")
class Pop2Piano:
def __init__(self,device:Device,model_id_path="sweetcocoa/pop2piano"):
self.model = Pop2PianoForConditionalGeneration.from_pretrained(model_id_path).to(device)
self.processor = Pop2PianoProcessor.from_pretrained(model_id_path)
def audio2midi(self,input,composer,num_bars,num_beams,steps_per_beat):
data, sr = librosa_load(input, sr=None)
inputs = self.processor(data, sr, steps_per_beat,return_tensors="pt",num_bars=num_bars)
self.processor.batch_decode(self.model.generate(num_beams=num_beams,do_sample=True,input_features=inputs["input_features"], composer="composer" + str(composer)),inputs)["pretty_midi_objects"][0].write(open("output.mid", "wb"))
return "output.mid"
def smooth_pitch_sequence(pitches, magnitudes, threshold=0.1):
midi_sequence = []
for i in range(pitches.shape[1]):
index = np_argmax(magnitudes[:, i])
pitch_mag = magnitudes[index, i]
pitch = pitches[index, i]
if pitch_mag < threshold or np_isnan(pitch) or pitch <= 0:
midi_sequence.append(None)
else:
midi_note = int(round(hz_to_midi(pitch)))
midi_sequence.append(midi_note)
return midi_sequence
def clean_midi_sequence(sequence, min_note_length=2):
cleaned = []
current_note = None
count = 0
for note in sequence + [None]:
if note == current_note:
count += 1
else:
if current_note is not None and count >= min_note_length:
cleaned.extend([current_note] * count)
else:
cleaned.extend([None] * count)
current_note = note
count = 1
return cleaned
def basic_to_midi(input_file, tempo_bpm=120):
wav, sr = librosa_load(input_file)
audio_duration = len(wav) / sr
pitches, magnitudes = piptrack(y=wav, sr=sr, hop_length=512)
midi_sequence = clean_midi_sequence(smooth_pitch_sequence(pitches, magnitudes))
total_frames = len(midi_sequence)
ticks_per_beat = 480
tempo = bpm2tempo(tempo_bpm)
ticks_per_second = (ticks_per_beat * tempo_bpm) / 60
time_per_frame = max(1, round((audio_duration * ticks_per_second) / total_frames))
midi_file = MidiFile(ticks_per_beat=ticks_per_beat)
track = MidiTrack()
midi_file.tracks.append(track)
track.append(MetaMessage('set_tempo', tempo=tempo))
last_note = None
duration = 0
for note in midi_sequence:
if note != last_note:
if last_note is not None:
track.append(Message('note_off', note=last_note, velocity=0, time=duration))
duration = 0
if note is not None:
track.append(Message('note_on', note=note, velocity=100, time=0))
last_note = note
duration += time_per_frame
if last_note is not None:
track.append(Message('note_off', note=last_note, velocity=0, time=duration))
midi_file.save("output.mid")
return "output.mid"
def spotify_to_midi(input_audio_path,tempo=120):
_, midi_data, _ = basic_pitch_predict(input_audio_path,midi_tempo=tempo)
midi_data.write("output.mid")
mid = MidiFile("output.mid")
for i, track in enumerate(mid.tracks):
mid.tracks[i] = [msg for msg in track if msg.type != 'program_change']
mid.save("output.mid")
return "output.mid"
import gradio as gr
gr.TabbedInterface([gr.Interface(basic_to_midi,[gr.Audio(type="filepath",label="Input Audio"),gr.Number(120,label="BPM")],gr.File(label="Midi File")),gr.Interface(spotify_to_midi,[gr.Audio(type="filepath",label="Input Audio"),gr.Number(120,label="BPM")],gr.File(label="Midi File")),gr.Interface(PretrainedModel(json_load(open(hf_hub_download("shethjenil/Audio2ViolinMidi","violin.json"))),hf_hub_download("shethjenil/Audio2ViolinMidi","violin_model.pt"),device).transcribe_music, [gr.Audio(label="Upload your Audio file",type="filepath"),gr.Number(32,label="Batch size"),gr.Radio(["spotify","rebab","tiktok"],value="spotify",label="Post Processing")],gr.File(label="Download MIDI file")),gr.Interface(Pop2Piano(device).audio2midi,[gr.Audio(label="Input Audio",type="filepath"),gr.Number(1, minimum=1, maximum=21, label="Composer"),gr.Number(2,label="Details in Piano"),gr.Number(1,label="Efficiency of Piano"),gr.Radio([1,2,4],label="steps per beat",value=2)],gr.File(label="MIDI File"))],["Basic","Medium","Advance","More Advance"]).launch()
|