from utils_violin_transcript import PretrainedModel from json import load as json_load from huggingface_hub import hf_hub_download from torch import device as Device from torch.cuda import is_available as cuda_is_available from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor from librosa import load as librosa_load, piptrack, hz_to_midi from mido import MidiFile, MidiTrack, Message, MetaMessage, bpm2tempo from basic_pitch.inference import predict as basic_pitch_predict from numpy import argmax as np_argmax, isnan as np_isnan device = Device("cuda" if cuda_is_available() else "cpu") class Pop2Piano: def __init__(self,device:Device,model_id_path="sweetcocoa/pop2piano"): self.model = Pop2PianoForConditionalGeneration.from_pretrained(model_id_path).to(device) self.processor = Pop2PianoProcessor.from_pretrained(model_id_path) def audio2midi(self,input,composer,num_bars,num_beams,steps_per_beat): data, sr = librosa_load(input, sr=None) inputs = self.processor(data, sr, steps_per_beat,return_tensors="pt",num_bars=num_bars) self.processor.batch_decode(self.model.generate(num_beams=num_beams,do_sample=True,input_features=inputs["input_features"], composer="composer" + str(composer)),inputs)["pretty_midi_objects"][0].write(open("output.mid", "wb")) return "output.mid" def smooth_pitch_sequence(pitches, magnitudes, threshold=0.1): midi_sequence = [] for i in range(pitches.shape[1]): index = np_argmax(magnitudes[:, i]) pitch_mag = magnitudes[index, i] pitch = pitches[index, i] if pitch_mag < threshold or np_isnan(pitch) or pitch <= 0: midi_sequence.append(None) else: midi_note = int(round(hz_to_midi(pitch))) midi_sequence.append(midi_note) return midi_sequence def clean_midi_sequence(sequence, min_note_length=2): cleaned = [] current_note = None count = 0 for note in sequence + [None]: if note == current_note: count += 1 else: if current_note is not None and count >= min_note_length: cleaned.extend([current_note] * count) else: cleaned.extend([None] * count) current_note = note count = 1 return cleaned def basic_to_midi(input_file, tempo_bpm=120): wav, sr = librosa_load(input_file) audio_duration = len(wav) / sr pitches, magnitudes = piptrack(y=wav, sr=sr, hop_length=512) midi_sequence = clean_midi_sequence(smooth_pitch_sequence(pitches, magnitudes)) total_frames = len(midi_sequence) ticks_per_beat = 480 tempo = bpm2tempo(tempo_bpm) ticks_per_second = (ticks_per_beat * tempo_bpm) / 60 time_per_frame = max(1, round((audio_duration * ticks_per_second) / total_frames)) midi_file = MidiFile(ticks_per_beat=ticks_per_beat) track = MidiTrack() midi_file.tracks.append(track) track.append(MetaMessage('set_tempo', tempo=tempo)) last_note = None duration = 0 for note in midi_sequence: if note != last_note: if last_note is not None: track.append(Message('note_off', note=last_note, velocity=0, time=duration)) duration = 0 if note is not None: track.append(Message('note_on', note=note, velocity=100, time=0)) last_note = note duration += time_per_frame if last_note is not None: track.append(Message('note_off', note=last_note, velocity=0, time=duration)) midi_file.save("output.mid") return "output.mid" def spotify_to_midi(input_audio_path,tempo=120): _, midi_data, _ = basic_pitch_predict(input_audio_path,midi_tempo=tempo) midi_data.write("output.mid") mid = MidiFile("output.mid") for i, track in enumerate(mid.tracks): mid.tracks[i] = [msg for msg in track if msg.type != 'program_change'] mid.save("output.mid") return "output.mid" import gradio as gr gr.TabbedInterface([gr.Interface(basic_to_midi,[gr.Audio(type="filepath",label="Input Audio"),gr.Number(120,label="BPM")],gr.File(label="Midi File")),gr.Interface(spotify_to_midi,[gr.Audio(type="filepath",label="Input Audio"),gr.Number(120,label="BPM")],gr.File(label="Midi File")),gr.Interface(PretrainedModel(json_load(open(hf_hub_download("shethjenil/Audio2ViolinMidi","violin.json"))),hf_hub_download("shethjenil/Audio2ViolinMidi","violin_model.pt"),device).transcribe_music, [gr.Audio(label="Upload your Audio file",type="filepath"),gr.Number(32,label="Batch size"),gr.Radio(["spotify","rebab","tiktok"],value="spotify",label="Post Processing")],gr.File(label="Download MIDI file")),gr.Interface(Pop2Piano(device).audio2midi,[gr.Audio(label="Input Audio",type="filepath"),gr.Number(1, minimum=1, maximum=21, label="Composer"),gr.Number(2,label="Details in Piano"),gr.Number(1,label="Efficiency of Piano"),gr.Radio([1,2,4],label="steps per beat",value=2)],gr.File(label="MIDI File"))],["Basic","Medium","Advance","More Advance"]).launch()