Spaces:
Sleeping
Sleeping
import numpy as np | |
import tensorflow as tf | |
import gradio as gr | |
from tensorflow.keras.preprocessing import image | |
from huggingface_hub import snapshot_download | |
import os | |
# Load the model from Hugging Face Hub | |
def load_model(repo_id): | |
download_dir = snapshot_download(repo_id) | |
model_path = os.path.join(download_dir, "full_model.weights.h5") | |
model = tf.keras.models.load_model(model_path) | |
return model | |
# Function to preprocess the uploaded image | |
def preprocess_image(img, target_size=(224, 224)): | |
img = img.resize(target_size) # Resize to match model input | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
img_array = tf.keras.applications.efficientnet.preprocess_input(img_array) | |
return img_array | |
# Perform inference | |
def predict(image_input): | |
class_names = ["Defective Tyre", "Good Tyre"] | |
# Preprocess image | |
img_array = preprocess_image(image_input) | |
# Get prediction | |
prediction = model.predict(img_array)[0][0] # Scalar sigmoid output | |
predicted_class_idx = int(prediction >= 0.5) # 0 if <0.5, 1 if >=0.5 | |
predicted_class = class_names[predicted_class_idx] # Get class name | |
return f"Predicted Class: {predicted_class} (Confidence: {prediction:.5f})" | |
# Hugging Face Model Repository ID | |
REPO_ID = "skngew/9053220B" # my actual repo ID | |
# Load the model | |
model = load_model(REPO_ID) | |
# Student ID | |
student_id = "Student ID: 9053220B" | |
# Markdown description to show classification threshold | |
threshold_info = """ | |
### EfficientNetB0 (Feature Extraction) | |
### Classification Threshold: | |
- A tyre is classified as **Good** if the confidence score is **≥ 0.5**. | |
- A tyre is classified as **Defective** if the confidence score is **< 0.5**. | |
""" | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil", label="Upload an Image"), | |
outputs=gr.Textbox(label="Prediction"), | |
title="Binary Classification: Good vs. Defective Tyre", | |
description=student_id, | |
allow_flagging="never", | |
examples=[], #Can add examples here | |
) | |
# Add the threshold information markdown | |
with gr.Blocks() as app: | |
gr.Markdown(threshold_info) # Display threshold info | |
interface.render() | |
# Launch the Gradio app | |
app.launch(share=True) | |