image2image / app_haircolor_img2img.py
zhiweili
change to img2img
fc74b1a
raw
history blame contribute delete
6.75 kB
import spaces
import gradio as gr
import time
import torch
import numpy as np
from PIL import Image
from segment_utils import(
segment_image,
restore_result,
)
from diffusers import (
DiffusionPipeline,
T2IAdapter,
MultiAdapter,
AutoencoderKL,
EulerAncestralDiscreteScheduler,
)
from controlnet_aux import (
CannyDetector,
LineartDetector,
)
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_EDIT_PROMPT = "RAW photo, Fujifilm XT3, sharp hair, high resolution hair, hair tones, natural hair, magazine hair, white color hair"
DEFAULT_CATEGORY = "hair"
canny_detector = CannyDetector()
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_detector = lineart_detector.to(DEVICE)
adapters = MultiAdapter(
[
T2IAdapter.from_pretrained(
"TencentARC/t2i-adapter-lineart-sdxl-1.0",
torch_dtype=torch.float16,
varient="fp16",
),
T2IAdapter.from_pretrained(
"TencentARC/t2i-adapter-canny-sdxl-1.0",
torch_dtype=torch.float16,
varient="fp16",
),
]
)
adapters = adapters.to(torch.float16)
basepipeline = DiffusionPipeline.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
scheduler=EulerAncestralDiscreteScheduler.from_pretrained(BASE_MODEL, subfolder="scheduler"),
adapter=adapters,
custom_pipeline="./pipelines/pipeline_sdxl_adapter_img2img.py",
)
basepipeline = basepipeline.to(DEVICE)
basepipeline.enable_model_cpu_offload()
@spaces.GPU(duration=30)
def image_to_image(
input_image: Image,
edit_prompt: str,
seed: int,
num_steps: int,
guidance_scale: float,
strength: float,
generate_size: int,
cond_scale1: float = 1.2,
cond_scale2: float = 1.2,
lineart_detect:float = 0.375,
canny_detect:float = 0.375,
):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
lineart_image = lineart_detector(input_image, int(generate_size * lineart_detect), generate_size)
canny_image = canny_detector(input_image, int(generate_size * canny_detect), generate_size)
cond_image = [lineart_image, canny_image]
cond_scale = [cond_scale1, cond_scale2]
generator = torch.Generator(device=DEVICE).manual_seed(seed)
generated_image = basepipeline(
generator=generator,
prompt=edit_prompt,
image=input_image,
height=generate_size,
width=generate_size,
guidance_scale=guidance_scale,
strength=strength,
num_inference_steps=num_steps,
adapter_image=cond_image,
adapter_conditioning_scale=cond_scale,
).images[0]
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return generated_image, time_cost_str
def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def create_demo() -> gr.Blocks:
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
generate_size = gr.Number(label="Generate Size", value=512)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
with gr.Column():
strength = gr.Slider(minimum=0, maximum=3, value=0.2, step=0.1, label="Strength")
with gr.Accordion("Advanced Options", open=False):
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
seed = gr.Number(label="Seed", value=8)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=0.8, step=0.1, label="Cond_scale1")
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=0.3, step=0.1, label="Cond_scale2")
lineart_detect = gr.Slider(minimum=0, maximum=1, value=0.375, step=0.01, label="Lineart Detect")
canny_detect = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label="Canny Detect")
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, strength, generate_size, cond_scale1, cond_scale2, lineart_detect, canny_detect],
outputs=[generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, generated_image],
outputs=[restored_image],
)
return demo