File size: 23,007 Bytes
d6ab44d
c5df237
17276eb
d6ab44d
fd70e43
647335c
dde7d2a
aaaa32a
d6ab44d
 
6234321
dde7d2a
 
 
6234321
fd70e43
d6ab44d
3f97903
fd70e43
3f97903
6234321
dde7d2a
913e5a4
c5df237
6234321
 
c5df237
 
 
 
 
 
 
 
 
 
dde7d2a
 
fd70e43
 
 
 
 
 
 
647335c
fd70e43
647335c
fd70e43
647335c
 
17276eb
fd70e43
17276eb
 
d6ab44d
dde7d2a
d6ab44d
 
 
 
3f97903
 
fd70e43
3f97903
 
fd70e43
 
3f97903
d6ab44d
fd70e43
d6ab44d
 
dde7d2a
 
 
 
c1e0e01
aaaa32a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ab44d
 
 
 
aaaa32a
d6ab44d
 
aaaa32a
d6ab44d
 
aaaa32a
d6ab44d
 
 
 
 
aaaa32a
 
 
 
647335c
c1e0e01
fd70e43
d6ab44d
 
 
3f97903
aaaa32a
fd70e43
 
 
 
 
c1e0e01
 
aaaa32a
647335c
 
 
dde7d2a
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd70e43
 
 
dde7d2a
fd70e43
 
a3c6550
aaaa32a
c1e0e01
aaaa32a
 
647335c
a3c6550
dde7d2a
 
d6ab44d
fd70e43
d6ab44d
 
 
dde7d2a
d6ab44d
 
fd70e43
d6ab44d
 
 
dde7d2a
aaaa32a
6234321
 
3f97903
6234321
 
 
 
 
 
 
fd70e43
aaaa32a
 
 
 
 
647335c
913e5a4
dde7d2a
 
d6ab44d
 
 
 
 
 
3f97903
 
fd70e43
3f97903
 
d6ab44d
 
 
 
 
fd70e43
d6ab44d
 
 
 
 
 
 
fd70e43
 
 
 
d6ab44d
fd70e43
d6ab44d
fd70e43
d6ab44d
fd70e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643182d
d6ab44d
a3c6550
d6ab44d
fd70e43
 
 
 
 
 
 
d6ab44d
fd70e43
 
d6ab44d
fd70e43
 
 
 
 
 
 
 
 
 
d6ab44d
fd70e43
 
 
 
 
d6ab44d
fd70e43
d6ab44d
 
fd70e43
d6ab44d
fd70e43
 
 
 
 
 
d6ab44d
 
 
fd70e43
 
d6ab44d
fd70e43
 
 
d6ab44d
dde7d2a
fd70e43
 
 
 
 
 
 
 
 
 
 
 
d6ab44d
fd70e43
 
 
 
 
d6ab44d
fd70e43
d6ab44d
3f97903
d6ab44d
 
 
c1e0e01
 
 
 
 
 
fd70e43
 
c1e0e01
 
 
 
 
 
fd70e43
d6ab44d
3f97903
d6ab44d
aaaa32a
 
643182d
d6ab44d
fd70e43
aaaa32a
dde7d2a
 
647335c
d6ab44d
fd70e43
 
 
 
 
 
 
 
 
d6ab44d
 
 
643182d
3f97903
fd70e43
643182d
fd70e43
 
 
 
 
913e5a4
fd70e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913e5a4
 
fd70e43
913e5a4
 
 
 
 
 
 
 
 
 
 
 
643182d
fd70e43
913e5a4
fd70e43
 
913e5a4
3f97903
913e5a4
a3c6550
913e5a4
fd70e43
 
d6ab44d
 
 
 
 
 
 
 
fd70e43
d6ab44d
fd70e43
d6ab44d
 
 
 
c1e0e01
3f97903
fd70e43
3f97903
c1e0e01
d6ab44d
dde7d2a
fd70e43
dde7d2a
fd70e43
aaaa32a
fd70e43
aaaa32a
 
fd70e43
647335c
aaaa32a
 
 
 
 
 
 
 
 
 
 
 
647335c
fd70e43
 
 
 
dde7d2a
647335c
 
d6ab44d
 
 
 
 
fd70e43
d6ab44d
 
 
 
 
fd70e43
dde7d2a
fd70e43
 
 
 
 
 
 
 
dde7d2a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import csv
import re
import unicodedata
from collections import defaultdict
from itertools import chain

import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from bm25s.hf import BM25HF, TokenizerHF
from transformers import AutoModelForPreTraining, AutoTokenizer


ALIAS_SEP = "|"
CATEGORY_ENTITY_PREFIX = "Category:"
ENTITY_SPECIAL_TOKENS = ["[PAD]", "[UNK]", "[MASK]", "[MASK2]"]
MAX_TEXT_LENGTH = 800
MAX_TEXT_FILE_LINES = 10
MAX_ENTITY_FILE_LINES = 1000

repo_id = "studio-ousia/luxe"
revision = "ja-v0.3.2"

nayose_repo_id = "studio-ousia/luxe-nayose-bm25"

ignore_category_patterns = [
    r"\d+年",
    r"楽曲 [ぁ-ん]",
    r"漫画作品 [ぁ-ん]",
    r"アニメ作品 [ぁ-ん]",
    r"アニメ作品 [ぁ-ん]",
    r"の一覧",
    r"各国の",
    r"各年の",
]


def clean_default_entity_vocab(tokenizer):
    entity_vocab = {}
    for entity, entity_id in tokenizer.entity_vocab.items():
        if entity.startswith("ja:"):
            entity = entity.removeprefix("ja:")
        elif entity.startswith("Category:ja:"):
            entity = "Category:" + entity.removeprefix("Category:ja:")

        entity_vocab[entity] = entity_id

    tokenizer.entity_vocab = entity_vocab


def normalize_text(text: str) -> str:
    return unicodedata.normalize("NFKC", text).strip()


def get_texts_from_file(file_path: str | None):
    texts = []
    if file_path is not None:
        try:
            with open(file_path, newline="") as f:
                reader = csv.DictReader(f, fieldnames=["text"])
                for i, row in enumerate(reader):
                    if i >= MAX_TEXT_FILE_LINES:
                        gr.Info(f"{MAX_TEXT_FILE_LINES}行目までのデータを読み込みました。", duration=5)
                        break

                    text = row["text"]
                    if text.strip() != "":
                        texts.append(text[:MAX_TEXT_LENGTH])
        except Exception as e:
            gr.Warning("ファイルを正しく読み込めませんでした。", duration=5)
            print(e)
            texts = []

    return texts


def get_token_spans(tokenizer, text: str) -> list[tuple[int, int]]:
    token_spans = []
    end = 0
    for token in tokenizer.tokenize(text):
        token = token.removeprefix("##")
        start = text.index(token, end)
        end = start + len(token)
        token_spans.append((start, end))

    return [(0, 0)] + token_spans + [(end, end)]  # count for "[CLS]" and "[SEP]"


def get_predicted_entity_spans(
    ner_logits: torch.Tensor, token_spans: list[tuple[int, int]], entity_span_sensitivity: float = 1.0
) -> list[tuple[int, int]]:
    length = ner_logits.size(-1)
    assert ner_logits.size() == (length, length)  # not batched

    ner_probs = torch.sigmoid(ner_logits).triu()
    probs_sorted, sort_idxs = ner_probs.flatten().sort(descending=True)

    predicted_entity_spans = []
    if entity_span_sensitivity > 0.0:
        for p, i in zip(probs_sorted, sort_idxs.tolist()):
            if p < 10.0 ** (-1.0 * entity_span_sensitivity):
                break

            start_idx = i // length
            end_idx = i % length

            start = token_spans[start_idx][0]
            end = token_spans[end_idx][1]

            for ex_start, ex_end in predicted_entity_spans:
                if not (start < end <= ex_start or ex_end <= start < end):
                    break
            else:
                predicted_entity_spans.append((start, end))

    return sorted(predicted_entity_spans)


def get_topk_entities_from_texts(
    models,
    texts: str | list[str],
    k: int = 5,
    entity_span_sensitivity: float = 1.0,
    nayose_coef: float = 1.0,
    entity_replaced_counts: bool = False,
) -> tuple[list[list[tuple[int, int]]], list[list[str]], list[list[str]], list[list[list[str]]]]:
    gr.Info("LUXEによる予測を実行しています。", duration=5)

    if isinstance(texts, str):
        texts = [texts]

    model, tokenizer, bm25_tokenizer, bm25_retriever = models

    batch_entity_spans: list[list[tuple[int, int]]] = []
    topk_normal_entities: list[list[str]] = []
    topk_category_entities: list[list[str]] = []
    topk_span_entities: list[list[list[str]]] = []

    id2normal_entity = {
        entity_id: entity
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id < model.config.num_normal_entities
    }
    id2category_entity = {
        entity_id - model.config.num_normal_entities: entity
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id >= model.config.num_normal_entities
    }
    ignore_category_entity_ids = [
        entity_id - model.config.num_normal_entities
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id >= model.config.num_normal_entities
        and any(re.search(pattern, entity) for pattern in ignore_category_patterns)
    ]

    entity_k = min(k, len(id2normal_entity))
    category_k = min(k, len(id2category_entity))

    for text in texts:
        text = normalize_text(text).strip()

        tokenized_examples = tokenizer(text, truncation=True, return_tensors="pt")
        model_outputs = model(**tokenized_examples)
        token_spans = get_token_spans(tokenizer, text)
        entity_spans = get_predicted_entity_spans(model_outputs.ner_logits[0], token_spans, entity_span_sensitivity)
        batch_entity_spans.append(entity_spans)

        tokenized_examples = tokenizer(text, entity_spans=entity_spans or None, truncation=True, return_tensors="pt")
        model_outputs = model(**tokenized_examples)

        if model_outputs.topic_entity_logits is not None:
            _, topk_normal_entity_ids = model_outputs.topic_entity_logits[0].topk(entity_k)
            topk_normal_entities.append([id2normal_entity[id_] for id_ in topk_normal_entity_ids.tolist()])
        else:
            topk_normal_entities.append([])

        if model_outputs.topic_category_logits is not None:
            model_outputs.topic_category_logits[:, ignore_category_entity_ids] = float("-inf")
            _, topk_category_entity_ids = model_outputs.topic_category_logits[0].topk(category_k)
            topk_category_entities.append([id2category_entity[id_] for id_ in topk_category_entity_ids.tolist()])
        else:
            topk_category_entities.append([])

        if model_outputs.entity_logits is not None:
            span_entity_logits = model_outputs.entity_logits[0, :, :500000]

            if nayose_coef > 0.0 and entity_replaced_counts == 0:
                nayose_queries = ["ja:" + text[start:end] for start, end in entity_spans]
                nayose_query_tokens = bm25_tokenizer.tokenize(nayose_queries)
                nayose_scores = torch.vstack(
                    [torch.from_numpy(bm25_retriever.get_scores(tokens)) for tokens in nayose_query_tokens]
                )
                span_entity_logits += nayose_coef * nayose_scores

            _, topk_span_entity_ids = span_entity_logits.topk(entity_k)
            topk_span_entities.append(
                [[id2normal_entity[id_] for id_ in ids] for ids in topk_span_entity_ids.tolist()]
            )
        else:
            topk_span_entities.append([])

    return texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities


def get_new_entity_text_pairs_from_file(file_path: str | None) -> list[list[str]]:
    new_entity_text_pairs = []
    if file_path is not None:
        try:
            with open(file_path, newline="") as f:
                reader = csv.DictReader(f, fieldnames=["entity", "text"])
                for i, row in enumerate(reader):
                    if i >= MAX_ENTITY_FILE_LINES:
                        gr.Info(f"{MAX_ENTITY_FILE_LINES}行目までのデータを読み込みました。", duration=5)
                        break

                    entity = normalize_text(row["entity"]).strip()
                    text = normalize_text(row["text"]).strip()
                    if entity != "" and text != "":
                        new_entity_text_pairs.append([entity, text])
        except Exception as e:
            gr.Warning("ファイルを正しく読み込めませんでした。", duration=5)
            print(e)
            new_entity_text_pairs = []

    return new_entity_text_pairs


def replace_entities(
    models, new_entity_text_pairs: list[tuple[str, str]], entity_replaced_counts: int, preserve_default_entities: bool
) -> int:
    if len(new_entity_text_pairs) == 0:
        return entity_replaced_counts

    gr.Info("LUXEのモデルとトークナイザのエンティティ語彙を更新しています。完了までお待ちください。", duration=5)

    model, tokenizer, bm25_tokenizer, bm25_retriever = models

    normal_entity_embeddings = defaultdict(list)  # entity -> list of embeddings
    category_entity_embeddings = defaultdict(list)  # entity -> list of embeddings
    normal_entity_counts = {}  # entity -> count (int)
    category_entity_counts = {}  # entity -> count (int)

    for entity, entity_id in sorted(tokenizer.entity_vocab.items(), key=lambda x: x[1]):
        if entity in ENTITY_SPECIAL_TOKENS or preserve_default_entities:
            entity_embedding = model.luke.entity_embeddings.entity_embeddings.weight.data[entity_id]
            if entity.startswith(CATEGORY_ENTITY_PREFIX):
                category_entity_embeddings[entity].append(entity_embedding)
                if model.config.entity_counts is not None:
                    category_entity_counts[entity] = model.config.entity_counts[entity_id]
                else:
                    category_entity_counts[entity] = 1
            else:
                normal_entity_embeddings[entity].append(entity_embedding)
                if model.config.entity_counts is not None:
                    normal_entity_counts[entity] = model.config.entity_counts[entity_id]
                else:
                    normal_entity_counts[entity] = 1

    for entity, text in new_entity_text_pairs:
        tokenized_inputs = tokenizer(text[:MAX_TEXT_LENGTH], truncation=True, return_tensors="pt")
        model_outputs = model(**tokenized_inputs)
        entity_embedding = model.entity_predictions.transform(model_outputs.last_hidden_state[:, 0])[0]
        if entity.startswith(CATEGORY_ENTITY_PREFIX):
            category_entity_embeddings[entity].append(entity_embedding)
            category_entity_counts.setdefault(entity, 1)
        else:
            normal_entity_embeddings[entity].append(entity_embedding)
            normal_entity_counts.setdefault(entity, 1)

    num_normal_entities = len(normal_entity_embeddings)
    num_category_entities = len(category_entity_embeddings)

    entity_embeddings = {
        entity: sum(embeddings) / len(embeddings)
        for entity, embeddings in chain(normal_entity_embeddings.items(), category_entity_embeddings.items())
    }
    entity_vocab = {entity: entity_id for entity_id, entity in enumerate(entity_embeddings.keys())}

    entity_counts = [
        category_entity_counts[entity] if entity.startswith(CATEGORY_ENTITY_PREFIX) else normal_entity_counts[entity]
        for entity in entity_vocab.keys()
    ]

    tokenizer.entity_vocab = entity_vocab
    tokenizer.entity_pad_token_id = entity_vocab["[PAD]"]
    tokenizer.entity_unk_token_id = entity_vocab["[UNK]"]
    tokenizer.entity_mask_token_id = entity_vocab["[MASK]"]
    tokenizer.entity_mask2_token_id = entity_vocab["[MASK2]"]

    entity_embeddings_tensor = torch.vstack(list(entity_embeddings.values()))

    if model.config.normalize_entity_embeddings:
        entity_embeddings_tensor = F.normalize(entity_embeddings_tensor)

    entity_vocab_size, entity_emb_size = entity_embeddings_tensor.size()

    entity_embeddings_module = nn.Embedding(
        entity_vocab_size,
        entity_emb_size,
        padding_idx=tokenizer.entity_pad_token_id,
        device=model.luke.entity_embeddings.entity_embeddings.weight.device,
        dtype=model.luke.entity_embeddings.entity_embeddings.weight.dtype,
    )
    entity_embeddings_module.weight.data = entity_embeddings_tensor.data
    model.luke.entity_embeddings.entity_embeddings = entity_embeddings_module

    entity_decoder_module = nn.Linear(entity_emb_size, entity_vocab_size, bias=False)
    model.entity_predictions.decoder = entity_decoder_module
    model.entity_predictions.bias = nn.Parameter(torch.zeros(entity_vocab_size))
    model.tie_weights()

    if model.config.entity_counts is not None:
        total_normal_entity_count = sum(entity_counts[:num_normal_entities])
        total_category_entity_count = sum(entity_counts[num_normal_entities:])

        entity_counts_tensor = torch.tensor(entity_counts, dtype=model.dtype, device=model.device)
        total_entity_counts = torch.tensor(
            [total_normal_entity_count] * num_normal_entities + [total_category_entity_count] * num_category_entities,
            dtype=model.dtype,
            device=model.device,
        )
        entity_log_probs = torch.log(entity_counts_tensor / total_entity_counts)
        model.entity_log_probs = entity_log_probs

    model.config.entity_vocab_size = entity_vocab_size
    model.config.num_normal_entities = num_normal_entities
    model.config.num_category_entities = num_category_entities
    if model.config.entity_counts is not None:
        model.config.entity_counts = entity_counts

    gr.Info("LUXEのモデルとトークナイザのエンティティ語彙の更新が完了しました。", duration=5)

    return entity_replaced_counts + 1


with gr.Blocks() as demo:
    model = AutoModelForPreTraining.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
    bm25_tokenizer = TokenizerHF(lower=True, splitter=tokenizer.tokenize, stopwords=None, stemmer=None)
    bm25_tokenizer.load_vocab_from_hub("studio-ousia/luxe-nayose-bm25")
    bm25_retriever = BM25HF.load_from_hub("studio-ousia/luxe-nayose-bm25")

    clean_default_entity_vocab(tokenizer)

    # Hint: gr.State に callable を渡すと、それが state の初期値を設定するための関数とみなされて
    # __call__ が引数なしで実行されてしまうため、gr.State の引数に model や tokenizer を単体で渡すとエラーになってしまう。
    # ここでは、モデル一式のタプル(callable でない)を渡すことで、そのようなエラーを回避している。
    # cf. https://www.gradio.app/docs/gradio/state#param-state-value
    models = gr.State((model, tokenizer, bm25_tokenizer, bm25_retriever))

    texts_input = gr.State([])

    entity_replaced_counts = gr.State(0)

    topk = gr.State(5)
    entity_span_sensitivity = gr.State(1.0)
    nayose_coef = gr.State(1.0)

    texts = gr.State([])
    batch_entity_spans = gr.State([])
    topk_normal_entities = gr.State([])
    topk_category_entities = gr.State([])
    topk_span_entities = gr.State([])

    gr.Markdown("# 📝 LUXE Demo (β版)")

    gr.Markdown(
        """Studio Ousia で開発中の次世代知識強化言語モデル **LUXE** の動作デモです。
        入力されたテキストに対して、テキスト中に出現するエンティティ(事物)と、テキスト全体の主題となるエンティティおよびカテゴリを予測します。
        デフォルトのLUXEは、エンティティおよびカテゴリとして、それぞれ日本語 Wikipedia における被リンク数上位50万件および10万件の項目を使用しています。
        予測対象のエンティティを任意のものに置き換えて推論を行うことも可能です(下記「LUXE のエンティティ語彙を置き換える」を参照してください)。""",
        line_breaks=True,
    )

    gr.Markdown("## 入力テキスト")

    with gr.Tab(label="直接入力"):
        text_input = gr.Textbox(label=f"入力テキスト(最大{MAX_TEXT_LENGTH}文字)", max_length=MAX_TEXT_LENGTH)
        text_submit_button = gr.Button(value="予測実行", variant="huggingface")
    with gr.Tab(label="ファイルアップロード"):
        gr.Markdown(
            f"""1行1事例のテキストファイル(最大{MAX_TEXT_FILE_LINES}行)をアップロードできます。
            アップロードされたテキストのそれぞれに対して推論が実行されます。""",
            line_breaks=True,
        )
        texts_file = gr.File(label="入力テキストファイル")
        texts_submit_button = gr.Button(value="予測実行", variant="huggingface")

    text_input.submit(
        fn=get_topk_entities_from_texts,
        inputs=[models, text_input, topk, entity_span_sensitivity, nayose_coef, entity_replaced_counts],
        outputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
    )
    text_submit_button.click(
        fn=get_topk_entities_from_texts,
        inputs=[models, text_input, topk, entity_span_sensitivity, nayose_coef, entity_replaced_counts],
        outputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
    )

    texts_file.change(fn=get_texts_from_file, inputs=texts_file, outputs=texts_input)
    texts_submit_button.click(
        fn=get_topk_entities_from_texts,
        inputs=[models, texts_input, topk, entity_span_sensitivity, nayose_coef, entity_replaced_counts],
        outputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
    )

    gr.Markdown("---")

    with gr.Accordion(label="ハイパーパラメータ", open=False):
        topk_input = gr.Number(5, label="予測するエンティティの件数 (Top K)", interactive=True)
        entity_span_sensitivity_input = gr.Slider(
            minimum=0.0, maximum=5.0, value=1.0, step=0.1, label="エンティティ検出の積極度", interactive=True
        )
        nayose_coef_input = gr.Slider(
            minimum=0.0, maximum=2.0, value=1.0, step=0.1, label="文字列一致の優先度", interactive=True
        )

    topk_input.change(fn=lambda val: val, inputs=topk_input, outputs=topk)
    entity_span_sensitivity_input.change(
        fn=lambda val: val, inputs=entity_span_sensitivity_input, outputs=entity_span_sensitivity
    )
    nayose_coef_input.change(fn=lambda val: val, inputs=nayose_coef_input, outputs=nayose_coef)

    with gr.Accordion(label="LUXE のエンティティ語彙を置き換える", open=False):
        gr.Markdown(
            """LUXE のモデルとトークナイザのエンティティ語彙を任意のエンティティ集合に置き換えます。
            エンティティとともに与えられるエンティティの説明文から、エンティティの埋め込みが計算され、LUXE の推論に利用されます。""",
            line_breaks=True,
        )
        gr.Markdown(
            f"「エンティティ」と「エンティティの説明文(最大{MAX_TEXT_LENGTH}文字)」の2列からなる CSV ファイル(最大{MAX_ENTITY_FILE_LINES}行)をアップロードできます。"
        )
        new_entity_text_pairs_file = gr.File(label="エンティティと説明文の CSV ファイル", height="128px")
        gr.Markdown("CSV ファイルから読み込まれた項目が以下の表に表示されます。表の内容を直接編集することも可能です。")
        new_entity_text_pairs_input = gr.Dataframe(
            # value=sample_new_entity_text_pairs,
            headers=["entity", "text"],
            col_count=(2, "fixed"),
            type="array",
            label="エンティティと説明文",
            interactive=True,
        )
        preserve_default_entities_checkbox = gr.Checkbox(label="既存のエンティティを保持する", value=True)
        replace_entity_button = gr.Button(value="エンティティ語彙を置き換える")
        gr.Markdown("LUXE のモデルのエンティティ語彙は、デモページの再読み込み時にリセットされます。")

    new_entity_text_pairs_file.change(
        fn=get_new_entity_text_pairs_from_file, inputs=new_entity_text_pairs_file, outputs=new_entity_text_pairs_input
    )
    replace_entity_button.click(
        fn=replace_entities,
        inputs=[models, new_entity_text_pairs_input, entity_replaced_counts, preserve_default_entities_checkbox],
        outputs=entity_replaced_counts,
    )

    gr.Markdown("---")
    gr.Markdown("## 予測されたエンティティとカテゴリ")

    @gr.render(inputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities])
    def render_topk_entities(
        texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
    ):
        for text, entity_spans, normal_entities, category_entities, span_entities in zip(
            texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
        ):
            highlighted_text_value = []
            cur = 0
            for start, end in entity_spans:
                if cur < start:
                    highlighted_text_value.append((text[cur:start], None))

                highlighted_text_value.append((text[start:end], "Entity"))
                cur = end

            if cur < len(text):
                highlighted_text_value.append((text[cur:], None))

            gr.HighlightedText(
                value=highlighted_text_value,
                color_map={"Entity": "green"},
                combine_adjacent=False,
                label="予測されたエンティティのスパン",
            )

            # gr.Textbox(text, label="Text")
            if normal_entities:
                gr.Dataset(
                    label="テキスト全体に関連するエンティティ",
                    components=["text"],
                    samples=[[entity] for entity in normal_entities],
                )
            if category_entities:
                gr.Dataset(
                    label="テキスト全体に関連するカテゴリ",
                    components=["text"],
                    samples=[[entity] for entity in category_entities],
                )

            with gr.Accordion(label="テキスト中のスパンに対応するエンティティ", open=len(texts) == 1):
                span_texts = [text[start:end] for start, end in entity_spans]
                for span_text, entities in zip(span_texts, span_entities):
                    gr.Dataset(
                        label=f"「{span_text}」に対応するエンティティ",
                        components=["text"],
                        samples=[[entity] for entity in entities],
                    )


demo.launch()