Spaces:
Sleeping
Sleeping
File size: 23,007 Bytes
d6ab44d c5df237 17276eb d6ab44d fd70e43 647335c dde7d2a aaaa32a d6ab44d 6234321 dde7d2a 6234321 fd70e43 d6ab44d 3f97903 fd70e43 3f97903 6234321 dde7d2a 913e5a4 c5df237 6234321 c5df237 dde7d2a fd70e43 647335c fd70e43 647335c fd70e43 647335c 17276eb fd70e43 17276eb d6ab44d dde7d2a d6ab44d 3f97903 fd70e43 3f97903 fd70e43 3f97903 d6ab44d fd70e43 d6ab44d dde7d2a c1e0e01 aaaa32a d6ab44d aaaa32a d6ab44d aaaa32a d6ab44d aaaa32a d6ab44d aaaa32a 647335c c1e0e01 fd70e43 d6ab44d 3f97903 aaaa32a fd70e43 c1e0e01 aaaa32a 647335c dde7d2a d6ab44d fd70e43 dde7d2a fd70e43 a3c6550 aaaa32a c1e0e01 aaaa32a 647335c a3c6550 dde7d2a d6ab44d fd70e43 d6ab44d dde7d2a d6ab44d fd70e43 d6ab44d dde7d2a aaaa32a 6234321 3f97903 6234321 fd70e43 aaaa32a 647335c 913e5a4 dde7d2a d6ab44d 3f97903 fd70e43 3f97903 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 643182d d6ab44d a3c6550 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d dde7d2a fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d 3f97903 d6ab44d c1e0e01 fd70e43 c1e0e01 fd70e43 d6ab44d 3f97903 d6ab44d aaaa32a 643182d d6ab44d fd70e43 aaaa32a dde7d2a 647335c d6ab44d fd70e43 d6ab44d 643182d 3f97903 fd70e43 643182d fd70e43 913e5a4 fd70e43 913e5a4 fd70e43 913e5a4 643182d fd70e43 913e5a4 fd70e43 913e5a4 3f97903 913e5a4 a3c6550 913e5a4 fd70e43 d6ab44d fd70e43 d6ab44d fd70e43 d6ab44d c1e0e01 3f97903 fd70e43 3f97903 c1e0e01 d6ab44d dde7d2a fd70e43 dde7d2a fd70e43 aaaa32a fd70e43 aaaa32a fd70e43 647335c aaaa32a 647335c fd70e43 dde7d2a 647335c d6ab44d fd70e43 d6ab44d fd70e43 dde7d2a fd70e43 dde7d2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import csv
import re
import unicodedata
from collections import defaultdict
from itertools import chain
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from bm25s.hf import BM25HF, TokenizerHF
from transformers import AutoModelForPreTraining, AutoTokenizer
ALIAS_SEP = "|"
CATEGORY_ENTITY_PREFIX = "Category:"
ENTITY_SPECIAL_TOKENS = ["[PAD]", "[UNK]", "[MASK]", "[MASK2]"]
MAX_TEXT_LENGTH = 800
MAX_TEXT_FILE_LINES = 10
MAX_ENTITY_FILE_LINES = 1000
repo_id = "studio-ousia/luxe"
revision = "ja-v0.3.2"
nayose_repo_id = "studio-ousia/luxe-nayose-bm25"
ignore_category_patterns = [
r"\d+年",
r"楽曲 [ぁ-ん]",
r"漫画作品 [ぁ-ん]",
r"アニメ作品 [ぁ-ん]",
r"アニメ作品 [ぁ-ん]",
r"の一覧",
r"各国の",
r"各年の",
]
def clean_default_entity_vocab(tokenizer):
entity_vocab = {}
for entity, entity_id in tokenizer.entity_vocab.items():
if entity.startswith("ja:"):
entity = entity.removeprefix("ja:")
elif entity.startswith("Category:ja:"):
entity = "Category:" + entity.removeprefix("Category:ja:")
entity_vocab[entity] = entity_id
tokenizer.entity_vocab = entity_vocab
def normalize_text(text: str) -> str:
return unicodedata.normalize("NFKC", text).strip()
def get_texts_from_file(file_path: str | None):
texts = []
if file_path is not None:
try:
with open(file_path, newline="") as f:
reader = csv.DictReader(f, fieldnames=["text"])
for i, row in enumerate(reader):
if i >= MAX_TEXT_FILE_LINES:
gr.Info(f"{MAX_TEXT_FILE_LINES}行目までのデータを読み込みました。", duration=5)
break
text = row["text"]
if text.strip() != "":
texts.append(text[:MAX_TEXT_LENGTH])
except Exception as e:
gr.Warning("ファイルを正しく読み込めませんでした。", duration=5)
print(e)
texts = []
return texts
def get_token_spans(tokenizer, text: str) -> list[tuple[int, int]]:
token_spans = []
end = 0
for token in tokenizer.tokenize(text):
token = token.removeprefix("##")
start = text.index(token, end)
end = start + len(token)
token_spans.append((start, end))
return [(0, 0)] + token_spans + [(end, end)] # count for "[CLS]" and "[SEP]"
def get_predicted_entity_spans(
ner_logits: torch.Tensor, token_spans: list[tuple[int, int]], entity_span_sensitivity: float = 1.0
) -> list[tuple[int, int]]:
length = ner_logits.size(-1)
assert ner_logits.size() == (length, length) # not batched
ner_probs = torch.sigmoid(ner_logits).triu()
probs_sorted, sort_idxs = ner_probs.flatten().sort(descending=True)
predicted_entity_spans = []
if entity_span_sensitivity > 0.0:
for p, i in zip(probs_sorted, sort_idxs.tolist()):
if p < 10.0 ** (-1.0 * entity_span_sensitivity):
break
start_idx = i // length
end_idx = i % length
start = token_spans[start_idx][0]
end = token_spans[end_idx][1]
for ex_start, ex_end in predicted_entity_spans:
if not (start < end <= ex_start or ex_end <= start < end):
break
else:
predicted_entity_spans.append((start, end))
return sorted(predicted_entity_spans)
def get_topk_entities_from_texts(
models,
texts: str | list[str],
k: int = 5,
entity_span_sensitivity: float = 1.0,
nayose_coef: float = 1.0,
entity_replaced_counts: bool = False,
) -> tuple[list[list[tuple[int, int]]], list[list[str]], list[list[str]], list[list[list[str]]]]:
gr.Info("LUXEによる予測を実行しています。", duration=5)
if isinstance(texts, str):
texts = [texts]
model, tokenizer, bm25_tokenizer, bm25_retriever = models
batch_entity_spans: list[list[tuple[int, int]]] = []
topk_normal_entities: list[list[str]] = []
topk_category_entities: list[list[str]] = []
topk_span_entities: list[list[list[str]]] = []
id2normal_entity = {
entity_id: entity
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id < model.config.num_normal_entities
}
id2category_entity = {
entity_id - model.config.num_normal_entities: entity
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= model.config.num_normal_entities
}
ignore_category_entity_ids = [
entity_id - model.config.num_normal_entities
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= model.config.num_normal_entities
and any(re.search(pattern, entity) for pattern in ignore_category_patterns)
]
entity_k = min(k, len(id2normal_entity))
category_k = min(k, len(id2category_entity))
for text in texts:
text = normalize_text(text).strip()
tokenized_examples = tokenizer(text, truncation=True, return_tensors="pt")
model_outputs = model(**tokenized_examples)
token_spans = get_token_spans(tokenizer, text)
entity_spans = get_predicted_entity_spans(model_outputs.ner_logits[0], token_spans, entity_span_sensitivity)
batch_entity_spans.append(entity_spans)
tokenized_examples = tokenizer(text, entity_spans=entity_spans or None, truncation=True, return_tensors="pt")
model_outputs = model(**tokenized_examples)
if model_outputs.topic_entity_logits is not None:
_, topk_normal_entity_ids = model_outputs.topic_entity_logits[0].topk(entity_k)
topk_normal_entities.append([id2normal_entity[id_] for id_ in topk_normal_entity_ids.tolist()])
else:
topk_normal_entities.append([])
if model_outputs.topic_category_logits is not None:
model_outputs.topic_category_logits[:, ignore_category_entity_ids] = float("-inf")
_, topk_category_entity_ids = model_outputs.topic_category_logits[0].topk(category_k)
topk_category_entities.append([id2category_entity[id_] for id_ in topk_category_entity_ids.tolist()])
else:
topk_category_entities.append([])
if model_outputs.entity_logits is not None:
span_entity_logits = model_outputs.entity_logits[0, :, :500000]
if nayose_coef > 0.0 and entity_replaced_counts == 0:
nayose_queries = ["ja:" + text[start:end] for start, end in entity_spans]
nayose_query_tokens = bm25_tokenizer.tokenize(nayose_queries)
nayose_scores = torch.vstack(
[torch.from_numpy(bm25_retriever.get_scores(tokens)) for tokens in nayose_query_tokens]
)
span_entity_logits += nayose_coef * nayose_scores
_, topk_span_entity_ids = span_entity_logits.topk(entity_k)
topk_span_entities.append(
[[id2normal_entity[id_] for id_ in ids] for ids in topk_span_entity_ids.tolist()]
)
else:
topk_span_entities.append([])
return texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
def get_new_entity_text_pairs_from_file(file_path: str | None) -> list[list[str]]:
new_entity_text_pairs = []
if file_path is not None:
try:
with open(file_path, newline="") as f:
reader = csv.DictReader(f, fieldnames=["entity", "text"])
for i, row in enumerate(reader):
if i >= MAX_ENTITY_FILE_LINES:
gr.Info(f"{MAX_ENTITY_FILE_LINES}行目までのデータを読み込みました。", duration=5)
break
entity = normalize_text(row["entity"]).strip()
text = normalize_text(row["text"]).strip()
if entity != "" and text != "":
new_entity_text_pairs.append([entity, text])
except Exception as e:
gr.Warning("ファイルを正しく読み込めませんでした。", duration=5)
print(e)
new_entity_text_pairs = []
return new_entity_text_pairs
def replace_entities(
models, new_entity_text_pairs: list[tuple[str, str]], entity_replaced_counts: int, preserve_default_entities: bool
) -> int:
if len(new_entity_text_pairs) == 0:
return entity_replaced_counts
gr.Info("LUXEのモデルとトークナイザのエンティティ語彙を更新しています。完了までお待ちください。", duration=5)
model, tokenizer, bm25_tokenizer, bm25_retriever = models
normal_entity_embeddings = defaultdict(list) # entity -> list of embeddings
category_entity_embeddings = defaultdict(list) # entity -> list of embeddings
normal_entity_counts = {} # entity -> count (int)
category_entity_counts = {} # entity -> count (int)
for entity, entity_id in sorted(tokenizer.entity_vocab.items(), key=lambda x: x[1]):
if entity in ENTITY_SPECIAL_TOKENS or preserve_default_entities:
entity_embedding = model.luke.entity_embeddings.entity_embeddings.weight.data[entity_id]
if entity.startswith(CATEGORY_ENTITY_PREFIX):
category_entity_embeddings[entity].append(entity_embedding)
if model.config.entity_counts is not None:
category_entity_counts[entity] = model.config.entity_counts[entity_id]
else:
category_entity_counts[entity] = 1
else:
normal_entity_embeddings[entity].append(entity_embedding)
if model.config.entity_counts is not None:
normal_entity_counts[entity] = model.config.entity_counts[entity_id]
else:
normal_entity_counts[entity] = 1
for entity, text in new_entity_text_pairs:
tokenized_inputs = tokenizer(text[:MAX_TEXT_LENGTH], truncation=True, return_tensors="pt")
model_outputs = model(**tokenized_inputs)
entity_embedding = model.entity_predictions.transform(model_outputs.last_hidden_state[:, 0])[0]
if entity.startswith(CATEGORY_ENTITY_PREFIX):
category_entity_embeddings[entity].append(entity_embedding)
category_entity_counts.setdefault(entity, 1)
else:
normal_entity_embeddings[entity].append(entity_embedding)
normal_entity_counts.setdefault(entity, 1)
num_normal_entities = len(normal_entity_embeddings)
num_category_entities = len(category_entity_embeddings)
entity_embeddings = {
entity: sum(embeddings) / len(embeddings)
for entity, embeddings in chain(normal_entity_embeddings.items(), category_entity_embeddings.items())
}
entity_vocab = {entity: entity_id for entity_id, entity in enumerate(entity_embeddings.keys())}
entity_counts = [
category_entity_counts[entity] if entity.startswith(CATEGORY_ENTITY_PREFIX) else normal_entity_counts[entity]
for entity in entity_vocab.keys()
]
tokenizer.entity_vocab = entity_vocab
tokenizer.entity_pad_token_id = entity_vocab["[PAD]"]
tokenizer.entity_unk_token_id = entity_vocab["[UNK]"]
tokenizer.entity_mask_token_id = entity_vocab["[MASK]"]
tokenizer.entity_mask2_token_id = entity_vocab["[MASK2]"]
entity_embeddings_tensor = torch.vstack(list(entity_embeddings.values()))
if model.config.normalize_entity_embeddings:
entity_embeddings_tensor = F.normalize(entity_embeddings_tensor)
entity_vocab_size, entity_emb_size = entity_embeddings_tensor.size()
entity_embeddings_module = nn.Embedding(
entity_vocab_size,
entity_emb_size,
padding_idx=tokenizer.entity_pad_token_id,
device=model.luke.entity_embeddings.entity_embeddings.weight.device,
dtype=model.luke.entity_embeddings.entity_embeddings.weight.dtype,
)
entity_embeddings_module.weight.data = entity_embeddings_tensor.data
model.luke.entity_embeddings.entity_embeddings = entity_embeddings_module
entity_decoder_module = nn.Linear(entity_emb_size, entity_vocab_size, bias=False)
model.entity_predictions.decoder = entity_decoder_module
model.entity_predictions.bias = nn.Parameter(torch.zeros(entity_vocab_size))
model.tie_weights()
if model.config.entity_counts is not None:
total_normal_entity_count = sum(entity_counts[:num_normal_entities])
total_category_entity_count = sum(entity_counts[num_normal_entities:])
entity_counts_tensor = torch.tensor(entity_counts, dtype=model.dtype, device=model.device)
total_entity_counts = torch.tensor(
[total_normal_entity_count] * num_normal_entities + [total_category_entity_count] * num_category_entities,
dtype=model.dtype,
device=model.device,
)
entity_log_probs = torch.log(entity_counts_tensor / total_entity_counts)
model.entity_log_probs = entity_log_probs
model.config.entity_vocab_size = entity_vocab_size
model.config.num_normal_entities = num_normal_entities
model.config.num_category_entities = num_category_entities
if model.config.entity_counts is not None:
model.config.entity_counts = entity_counts
gr.Info("LUXEのモデルとトークナイザのエンティティ語彙の更新が完了しました。", duration=5)
return entity_replaced_counts + 1
with gr.Blocks() as demo:
model = AutoModelForPreTraining.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
bm25_tokenizer = TokenizerHF(lower=True, splitter=tokenizer.tokenize, stopwords=None, stemmer=None)
bm25_tokenizer.load_vocab_from_hub("studio-ousia/luxe-nayose-bm25")
bm25_retriever = BM25HF.load_from_hub("studio-ousia/luxe-nayose-bm25")
clean_default_entity_vocab(tokenizer)
# Hint: gr.State に callable を渡すと、それが state の初期値を設定するための関数とみなされて
# __call__ が引数なしで実行されてしまうため、gr.State の引数に model や tokenizer を単体で渡すとエラーになってしまう。
# ここでは、モデル一式のタプル(callable でない)を渡すことで、そのようなエラーを回避している。
# cf. https://www.gradio.app/docs/gradio/state#param-state-value
models = gr.State((model, tokenizer, bm25_tokenizer, bm25_retriever))
texts_input = gr.State([])
entity_replaced_counts = gr.State(0)
topk = gr.State(5)
entity_span_sensitivity = gr.State(1.0)
nayose_coef = gr.State(1.0)
texts = gr.State([])
batch_entity_spans = gr.State([])
topk_normal_entities = gr.State([])
topk_category_entities = gr.State([])
topk_span_entities = gr.State([])
gr.Markdown("# 📝 LUXE Demo (β版)")
gr.Markdown(
"""Studio Ousia で開発中の次世代知識強化言語モデル **LUXE** の動作デモです。
入力されたテキストに対して、テキスト中に出現するエンティティ(事物)と、テキスト全体の主題となるエンティティおよびカテゴリを予測します。
デフォルトのLUXEは、エンティティおよびカテゴリとして、それぞれ日本語 Wikipedia における被リンク数上位50万件および10万件の項目を使用しています。
予測対象のエンティティを任意のものに置き換えて推論を行うことも可能です(下記「LUXE のエンティティ語彙を置き換える」を参照してください)。""",
line_breaks=True,
)
gr.Markdown("## 入力テキスト")
with gr.Tab(label="直接入力"):
text_input = gr.Textbox(label=f"入力テキスト(最大{MAX_TEXT_LENGTH}文字)", max_length=MAX_TEXT_LENGTH)
text_submit_button = gr.Button(value="予測実行", variant="huggingface")
with gr.Tab(label="ファイルアップロード"):
gr.Markdown(
f"""1行1事例のテキストファイル(最大{MAX_TEXT_FILE_LINES}行)をアップロードできます。
アップロードされたテキストのそれぞれに対して推論が実行されます。""",
line_breaks=True,
)
texts_file = gr.File(label="入力テキストファイル")
texts_submit_button = gr.Button(value="予測実行", variant="huggingface")
text_input.submit(
fn=get_topk_entities_from_texts,
inputs=[models, text_input, topk, entity_span_sensitivity, nayose_coef, entity_replaced_counts],
outputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
text_submit_button.click(
fn=get_topk_entities_from_texts,
inputs=[models, text_input, topk, entity_span_sensitivity, nayose_coef, entity_replaced_counts],
outputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
texts_file.change(fn=get_texts_from_file, inputs=texts_file, outputs=texts_input)
texts_submit_button.click(
fn=get_topk_entities_from_texts,
inputs=[models, texts_input, topk, entity_span_sensitivity, nayose_coef, entity_replaced_counts],
outputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
gr.Markdown("---")
with gr.Accordion(label="ハイパーパラメータ", open=False):
topk_input = gr.Number(5, label="予測するエンティティの件数 (Top K)", interactive=True)
entity_span_sensitivity_input = gr.Slider(
minimum=0.0, maximum=5.0, value=1.0, step=0.1, label="エンティティ検出の積極度", interactive=True
)
nayose_coef_input = gr.Slider(
minimum=0.0, maximum=2.0, value=1.0, step=0.1, label="文字列一致の優先度", interactive=True
)
topk_input.change(fn=lambda val: val, inputs=topk_input, outputs=topk)
entity_span_sensitivity_input.change(
fn=lambda val: val, inputs=entity_span_sensitivity_input, outputs=entity_span_sensitivity
)
nayose_coef_input.change(fn=lambda val: val, inputs=nayose_coef_input, outputs=nayose_coef)
with gr.Accordion(label="LUXE のエンティティ語彙を置き換える", open=False):
gr.Markdown(
"""LUXE のモデルとトークナイザのエンティティ語彙を任意のエンティティ集合に置き換えます。
エンティティとともに与えられるエンティティの説明文から、エンティティの埋め込みが計算され、LUXE の推論に利用されます。""",
line_breaks=True,
)
gr.Markdown(
f"「エンティティ」と「エンティティの説明文(最大{MAX_TEXT_LENGTH}文字)」の2列からなる CSV ファイル(最大{MAX_ENTITY_FILE_LINES}行)をアップロードできます。"
)
new_entity_text_pairs_file = gr.File(label="エンティティと説明文の CSV ファイル", height="128px")
gr.Markdown("CSV ファイルから読み込まれた項目が以下の表に表示されます。表の内容を直接編集することも可能です。")
new_entity_text_pairs_input = gr.Dataframe(
# value=sample_new_entity_text_pairs,
headers=["entity", "text"],
col_count=(2, "fixed"),
type="array",
label="エンティティと説明文",
interactive=True,
)
preserve_default_entities_checkbox = gr.Checkbox(label="既存のエンティティを保持する", value=True)
replace_entity_button = gr.Button(value="エンティティ語彙を置き換える")
gr.Markdown("LUXE のモデルのエンティティ語彙は、デモページの再読み込み時にリセットされます。")
new_entity_text_pairs_file.change(
fn=get_new_entity_text_pairs_from_file, inputs=new_entity_text_pairs_file, outputs=new_entity_text_pairs_input
)
replace_entity_button.click(
fn=replace_entities,
inputs=[models, new_entity_text_pairs_input, entity_replaced_counts, preserve_default_entities_checkbox],
outputs=entity_replaced_counts,
)
gr.Markdown("---")
gr.Markdown("## 予測されたエンティティとカテゴリ")
@gr.render(inputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities])
def render_topk_entities(
texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
):
for text, entity_spans, normal_entities, category_entities, span_entities in zip(
texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
):
highlighted_text_value = []
cur = 0
for start, end in entity_spans:
if cur < start:
highlighted_text_value.append((text[cur:start], None))
highlighted_text_value.append((text[start:end], "Entity"))
cur = end
if cur < len(text):
highlighted_text_value.append((text[cur:], None))
gr.HighlightedText(
value=highlighted_text_value,
color_map={"Entity": "green"},
combine_adjacent=False,
label="予測されたエンティティのスパン",
)
# gr.Textbox(text, label="Text")
if normal_entities:
gr.Dataset(
label="テキスト全体に関連するエンティティ",
components=["text"],
samples=[[entity] for entity in normal_entities],
)
if category_entities:
gr.Dataset(
label="テキスト全体に関連するカテゴリ",
components=["text"],
samples=[[entity] for entity in category_entities],
)
with gr.Accordion(label="テキスト中のスパンに対応するエンティティ", open=len(texts) == 1):
span_texts = [text[start:end] for start, end in entity_spans]
for span_text, entities in zip(span_texts, span_entities):
gr.Dataset(
label=f"「{span_text}」に対応するエンティティ",
components=["text"],
samples=[[entity] for entity in entities],
)
demo.launch()
|