Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torchaudio | |
import numpy as np | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# Model loading function with caching | |
def load_model(): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model = WhisperForConditionalGeneration.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune") | |
model = model.to(device=device, dtype=torch_dtype) | |
processor = WhisperProcessor.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune") | |
return model, processor, device, torch_dtype | |
# Load model and processor once at startup | |
model, processor, device, torch_dtype = load_model() | |
# Define the transcription function | |
def transcribe_audio(audio_file): | |
# Check if audio file exists | |
if audio_file is None: | |
return "Please upload an audio file" | |
try: | |
# Load and preprocess audio | |
waveform, sample_rate = torchaudio.load(audio_file) | |
# Resample to 16kHz (required for Whisper models) | |
if sample_rate != 16000: | |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
waveform = resampler(waveform) | |
# Convert stereo to mono if needed | |
if waveform.shape[0] > 1: | |
waveform = waveform.mean(dim=0, keepdim=True) | |
# Convert to numpy array | |
waveform_np = waveform.squeeze().cpu().numpy() | |
# Process with model | |
input_features = processor(waveform_np, sampling_rate=16000, return_tensors="pt").input_features | |
input_features = input_features.to(device=device, dtype=torch_dtype) | |
generated_ids = model.generate(input_features, max_new_tokens=128) | |
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return transcription | |
except Exception as e: | |
return f"Error processing audio: {str(e)}" | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(type="filepath"), | |
outputs="text", | |
title="ATC Speech Transcription", | |
description="Convert Air Traffic Control (ATC) radio communications to text. Upload your own ATC audio or try the examples below.", | |
examples=[ | |
["atc-sample-1.wav"], | |
["atc-sample-2.wav"], | |
["atc-sample-3.wav"] | |
], | |
article="This model is fine-tuned on the ATCOSIM dataset with a 3.73% Word Error Rate on ATC communications. It is specifically optimized for aviation terminology, callsigns, and standard phraseology. Audio should be 16kHz sample rate for best results." | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
demo.launch() |