import gradio as gr import torch import torchaudio import numpy as np from transformers import WhisperProcessor, WhisperForConditionalGeneration # Model loading function with caching def load_model(): device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = WhisperForConditionalGeneration.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune") model = model.to(device=device, dtype=torch_dtype) processor = WhisperProcessor.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune") return model, processor, device, torch_dtype # Load model and processor once at startup model, processor, device, torch_dtype = load_model() # Define the transcription function def transcribe_audio(audio_file): # Check if audio file exists if audio_file is None: return "Please upload an audio file" try: # Load and preprocess audio waveform, sample_rate = torchaudio.load(audio_file) # Resample to 16kHz (required for Whisper models) if sample_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) waveform = resampler(waveform) # Convert stereo to mono if needed if waveform.shape[0] > 1: waveform = waveform.mean(dim=0, keepdim=True) # Convert to numpy array waveform_np = waveform.squeeze().cpu().numpy() # Process with model input_features = processor(waveform_np, sampling_rate=16000, return_tensors="pt").input_features input_features = input_features.to(device=device, dtype=torch_dtype) generated_ids = model.generate(input_features, max_new_tokens=128) transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return transcription except Exception as e: return f"Error processing audio: {str(e)}" # Create Gradio interface demo = gr.Interface( fn=transcribe_audio, inputs=gr.Audio(type="filepath"), outputs="text", title="ATC Speech Transcription", description="Convert Air Traffic Control (ATC) radio communications to text. Upload your own ATC audio or try the examples below.", examples=[ ["atc-sample-1.wav"], ["atc-sample-2.wav"], ["atc-sample-3.wav"] ], article="This model is fine-tuned on the ATCOSIM dataset with a 3.73% Word Error Rate on ATC communications. It is specifically optimized for aviation terminology, callsigns, and standard phraseology. Audio should be 16kHz sample rate for best results." ) # Launch the interface if __name__ == "__main__": demo.launch()