Spaces:
Runtime error
Runtime error
# Copyright (c) 2025 MediaTek Reserch Inc (authors: Chan-Jan Hsu) | |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR)) | |
import argparse | |
import gradio as gr | |
import numpy as np | |
import torch | |
torch.set_num_threads(1) | |
import torchaudio | |
import random | |
import librosa | |
from transformers import pipeline | |
import subprocess | |
from scipy.signal import resample | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
from cosyvoice.cli.cosyvoice import CosyVoice | |
from cosyvoice.utils.file_utils import load_wav, speed_change | |
#logging.basicConfig(level=logging.DEBUG, | |
# format='%(asctime)s %(levelname)s %(message)s') | |
def generate_seed(): | |
seed = random.randint(1, 100000000) | |
return { | |
"__type__": "update", | |
"value": seed | |
} | |
def set_all_random_seed(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
max_val = 0.8 | |
def postprocess(speech, top_db=60, hop_length=220, win_length=440): | |
speech, _ = librosa.effects.trim( | |
speech, top_db=top_db, | |
frame_length=win_length, | |
hop_length=hop_length | |
) | |
if speech.abs().max() > max_val: | |
speech = speech / speech.abs().max() * max_val | |
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1) | |
return speech | |
def generate_audio(tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, select_which): | |
if select_which == "上傳檔案" and prompt_wav_upload is not None: | |
prompt_wav = prompt_wav_upload | |
elif select_which == "麥克風" and prompt_wav_record is not None: | |
prompt_wav = prompt_wav_record | |
else: | |
prompt_wav = None | |
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode | |
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) | |
set_all_random_seed(seed) | |
output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k) | |
speed_factor = 1 | |
if speed_factor != 1.0: | |
#try: | |
#audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor)) | |
#audio_data = audio_data.numpy().flatten() | |
new_length = int(len(output['tts_speech']) / speed_factor) | |
audio_data = resample(output['tts_speech'], new_length) | |
# except Exception as e: | |
# print(f"Failed to change speed of audio: \n{e}") | |
else: | |
audio_data = output['tts_speech'].numpy().flatten() | |
return (target_sr, audio_data) | |
def generate_text(prompt_wav_upload, prompt_wav_record, select_which): | |
# Determine which input to use based on the selection in select_which | |
if select_which == "上傳檔案" and prompt_wav_upload is not None: | |
prompt_wav = prompt_wav_upload | |
LAST_UPLOADED = "upload" | |
elif select_which == "麥克風" and prompt_wav_record is not None: | |
prompt_wav = prompt_wav_record | |
LAST_UPLOADED = "record" | |
else: | |
prompt_wav = None | |
LAST_UPLOADED = None | |
print(select_which) | |
# Process with ASR pipeline | |
if prompt_wav: | |
results = asr_pipeline(prompt_wav) | |
return results['text'] | |
return "No valid input detected." | |
# LAST_UPLOADED = "" | |
# def switch_selected(select_which): | |
# # Check the file type (assuming WAV file) | |
# if select_which == "上傳檔案" and prompt_wav_upload is not None: | |
# prompt_wav = prompt_wav_upload | |
# LAST_UPLOADED = "upload" | |
# elif select_which == "麥克風" and prompt_wav_record is not None: | |
# prompt_wav = prompt_wav_record | |
# return "麥克風" | |
def demo_get_audio(tts_text): | |
sample_wav = 'sample.wav' | |
speech, sample_rate = torchaudio.load(sample_wav) | |
return sample_rate, speech | |
def main(): | |
with gr.Blocks(title="BreezyVoice 語音合成系統", theme="default") as demo: | |
# Title and About section at the top | |
gr.Markdown("# BreezyVoice 語音合成系統") | |
gr.Markdown( | |
"""### 僅需5秒語音樣本,就可輸出擬真人聲。""" | |
) | |
with gr.Row(): | |
gr.Image(value="https://huggingface.co/spaces/Splend1dchan/BreezyVoice-Playground/resolve/main/flowchart.png", interactive=False, scale=3) | |
gr.Markdown( | |
"""#### 此沙盒使用 Huggingface CPU,請預期大於200 秒的推理時間,您可以考慮以下方法加速: | |
1. **強烈建議**複製這個 Space(Duplicate this space),以分散流量! | |
2. 複製至本地GPU執行(請參考[指南](https://huggingface.co/docs/hub/en/spaces-overview))或使用[kaggle](https://www.kaggle.com/code/a24998667/breezyvoice-playground) | |
3. 複製至本地CPU執行(請參考[指南](https://huggingface.co/docs/hub/en/spaces-overview)) | |
為了加快推理速度,g2pw注音標註並未被啟動。 | |
免責聲明:此沙盒在一次性容器地端執行,關閉後檔案將遭到刪除。此沙盒不屬於聯發創新基地,聯發創新基地無法獲得任何使用者輸入。""" | |
) | |
# All content arranged in a single column | |
with gr.Column(): | |
# Configuration Section | |
# Grouping prompt audio inputs and auto speech recognition in one block using Markdown | |
gr.Markdown("### 步驟 1. 音訊樣本輸入 & 音訊樣本文本輸入") | |
gr.Markdown("選擇prompt音訊檔案或錄製prompt音訊 (5~15秒),並手動校對自動產生的音訊樣本文本。") | |
prompt_wav_upload = gr.Audio( | |
sources='upload', | |
type='filepath', | |
label='選擇prompt音訊檔案(確保取樣率不低於16khz)' | |
) | |
prompt_wav_record = gr.Audio( | |
sources='microphone', | |
type='filepath', | |
label='錄製prompt音訊檔案' | |
) | |
with gr.Blocks(): | |
select_which = gr.Radio(["上傳檔案", "麥克風"], label="音訊來源", interactive=True ) | |
with gr.Blocks(): | |
prompt_text = gr.Textbox( | |
label="音訊樣本文本輸入(此欄位應與音檔內容完全相同)", | |
lines=2, | |
placeholder="音訊樣本文本" | |
) | |
# Automatic speech recognition when either prompt audio input changes | |
def a(X): | |
return "上傳檔案" | |
prompt_wav_upload.change( | |
fn=a,#lambda file: "上傳檔案", | |
inputs=[prompt_wav_upload], | |
outputs=select_which | |
) | |
prompt_wav_record.change( | |
fn=lambda recording: "麥克風", | |
inputs=[prompt_wav_record], | |
outputs=select_which | |
) | |
select_which.change( | |
fn=generate_text, | |
inputs=[prompt_wav_upload, prompt_wav_record, select_which], | |
outputs=prompt_text | |
) | |
# select_which.change( | |
# fn=switch_selected, | |
# inputs=[select_which], | |
# outputs= None | |
# ) | |
# Input Section: Synthesis Text | |
gr.Markdown("### 步驟 2.合成文本輸入") | |
tts_text = gr.Textbox( | |
label="輸入想要合成的文本", | |
lines=2, | |
placeholder="請輸入想要合成的文本...", | |
value="你好,歡迎光臨" | |
) | |
# Output Section | |
gr.Markdown("### 步驟 3. 合成音訊") | |
# Generation button for audio synthesis (triggered manually) | |
with gr.Accordion("進階設定", open=False): | |
seed = gr.Number(value=0, label="隨機推理種子") | |
#seed_button = gr.Button("隨機") | |
seed_button = gr.Button(value="\U0001F3B2生成隨機推理種子\U0001F3B2") | |
speed_factor = 1 | |
# speed_factor = gr.Slider( | |
# minimum=0.25, | |
# maximum=4, | |
# step=0.05, | |
# label="語速", | |
# value=1.0, | |
# interactive=True | |
# ) | |
generate_button = gr.Button("生成音訊") | |
audio_output = gr.Audio(label="合成音訊") | |
# Set up callbacks for seed generation and audio synthesis | |
seed_button.click(fn=generate_seed, inputs=[], outputs=seed) | |
generate_button.click( | |
fn=generate_audio, | |
inputs=[tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, select_which], | |
outputs=audio_output | |
) | |
demo.queue(max_size=10, default_concurrency_limit=1) | |
demo.launch() | |
if __name__ == '__main__': | |
cosyvoice = CosyVoice('Splend1dchan/BreezyVoice') | |
asr_pipeline = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-tiny", | |
tokenizer="openai/whisper-tiny", | |
device=0 # Use GPU (if available); set to -1 for CPU | |
) | |
sft_spk = cosyvoice.list_avaliable_spks() | |
prompt_sr, target_sr = 16000, 22050 | |
default_data = np.zeros(target_sr) | |
main() | |