File size: 7,563 Bytes
e428a75
 
 
 
a025623
e428a75
 
 
 
 
 
6614cd8
 
 
 
 
 
 
e428a75
 
 
020c49b
 
 
 
 
 
 
 
 
5b1a5b3
020c49b
 
 
db044a3
020c49b
db044a3
 
020c49b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb27189
 
 
 
 
 
 
 
 
 
 
 
 
 
020c49b
 
 
feb62ec
 
45cd324
 
020c49b
 
 
 
 
 
 
 
 
 
 
 
 
7b4d7aa
020c49b
 
 
 
 
eb27189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020c49b
 
 
 
 
 
 
 
7b4d7aa
eb27189
 
 
 
 
 
 
 
 
 
 
 
8db57fe
eb27189
8db57fe
eb27189
 
 
 
 
 
 
7b4d7aa
 
 
 
 
 
eb62e59
 
 
 
 
 
 
 
ab0f264
eb62e59
 
7b4d7aa
eb62e59
 
7b4d7aa
ab0f264
7b4d7aa
eb62e59
 
 
ab0f264
eb62e59
 
 
 
7b4d7aa
eb62e59
7b4d7aa
eb62e59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4d7aa
 
 
 
eb62e59
 
 
 
3571fd6
eb62e59
 
 
3571fd6
eb62e59
 
7b4d7aa
eb62e59
 
 
 
7b4d7aa
eb62e59
 
 
 
7b4d7aa
eb62e59
 
 
7b4d7aa
 
 
 
eb62e59
 
 
 
fddaaf5
eb62e59
 
7b4d7aa
eb62e59
 
 
7b4d7aa
eb62e59
 
7b4d7aa
eb62e59
7b4d7aa
eb62e59
 
 
 
7b4d7aa
eb62e59
 
 
7b4d7aa
 
 
 
eb62e59
 
 
 
3571fd6
eb62e59
 
 
 
 
 
7b4d7aa
eb62e59
 
 
 
 
 
 
 
 
 
 
 
7c96437
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
---
title: Spark-TTS
emoji: 
colorFrom: yellow
colorTo: yellow
sdk: gradio
sdk_version: 5.19.0
app_file: webui.py
pinned: false
license: apache-2.0
short_description: (Unofficial) Gradio demo for Spark-TTS
models:
  - SparkAudio/Spark-TTS-0.5B
tags:
  - text-to-speech
  - voice-cloning
  - speech-synthesis
python_version: "3.12"
---


<div align="center">
    <h1>
    Spark-TTS
    </h1>
    <p>
    Official PyTorch code for inference of <br>
    <b><em>Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens</em></b>
    </p>
    <p>
    <img src="src/logo.webp" alt="Spark-TTS Logo" style="width: 200px; height: 200px;">
    </p>
    <p>
    </p>
    <a href="https://sparkaudio.github.io/spark-tts/"><img src="https://img.shields.io/badge/Demo-Page-lightgrey" alt="version"></a>
    <a href="https://github.com/SparkAudio/Spark-TTS"><img src="https://img.shields.io/badge/Platform-linux-lightgrey" alt="version"></a>
    <a href="https://github.com/SparkAudio/Spark-TTS"><img src="https://img.shields.io/badge/Python-3.12+-orange" alt="version"></a>
    <a href="https://github.com/SparkAudio/Spark-TTS"><img src="https://img.shields.io/badge/PyTorch-2.5+-brightgreen" alt="python"></a>
    <a href="https://github.com/SparkAudio/Spark-TTS"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="mit"></a>
</div>


## Spark-TTS 🔥

### Overview

Spark-TTS is an advanced text-to-speech system that uses the power of large language models (LLM) for highly accurate and natural-sounding voice synthesis. It is designed to be efficient, flexible, and powerful for both research and production use.

### Key Features

- **Simplicity and Efficiency**: Built entirely on Qwen2.5, Spark-TTS eliminates the need for additional generation models like flow matching. Instead of relying on separate models to generate acoustic features, it directly reconstructs audio from the code predicted by the LLM. This approach streamlines the process, improving efficiency and reducing complexity.
- **High-Quality Voice Cloning**: Supports zero-shot voice cloning, which means it can replicate a speaker's voice even without specific training data for that voice. This is ideal for cross-lingual and code-switching scenarios, allowing for seamless transitions between languages and voices without requiring separate training for each one.
- **Bilingual Support**: Supports both Chinese and English, and is capable of zero-shot voice cloning for cross-lingual and code-switching scenarios, enabling the model to synthesize speech in multiple languages with high naturalness and accuracy.
- **Controllable Speech Generation**: Supports creating virtual speakers by adjusting parameters such as gender, pitch, and speaking rate.

---

<table align="center">
  <tr>
    <td align="center"><b>Inference Overview of Voice Cloning</b><br><img src="src/figures/infer_voice_cloning.png" width="80%" /></td>
  </tr>
  <tr>
    <td align="center"><b>Inference Overview of Controlled Generation</b><br><img src="src/figures/infer_control.png" width="80%" /></td>
  </tr>
</table>


## Install
**Clone and Install**

  Here are instructions for installing on Linux. If you're on Windows, please refer to the [Windows Installation Guide](https://github.com/SparkAudio/Spark-TTS/issues/5).  
*(Thanks to [@AcTePuKc](https://github.com/AcTePuKc) for the detailed Windows instructions!)*


- Clone the repo
``` sh
git clone https://github.com/SparkAudio/Spark-TTS.git
cd Spark-TTS
```

- Install Conda: please see https://docs.conda.io/en/latest/miniconda.html
- Create Conda env:

``` sh
conda create -n sparktts -y python=3.12
conda activate sparktts
pip install -r requirements.txt
# If you are in mainland China, you can set the mirror as follows:
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
```

**Model Download**

Download via python:
```python
from huggingface_hub import snapshot_download

snapshot_download("SparkAudio/Spark-TTS-0.5B", local_dir="pretrained_models/Spark-TTS-0.5B")
```

Download via git clone:
```sh
mkdir -p pretrained_models

# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install

git clone https://huggingface.co/SparkAudio/Spark-TTS-0.5B pretrained_models/Spark-TTS-0.5B
```

**Basic Usage**

You can simply run the demo with the following commands:
``` sh
cd example
bash infer.sh
```

Alternatively, you can directly execute the following command in the command line to perform inference:

``` sh
python -m cli.inference \
    --text "text to synthesis." \
    --device 0 \
    --save_dir "path/to/save/audio" \
    --model_dir pretrained_models/Spark-TTS-0.5B \
    --prompt_text "transcript of the prompt audio" \
    --prompt_speech_path "path/to/prompt_audio"
```

**Web UI Usage**

You can start the UI interface by running `python webui.py --device 0`, which allows you to perform Voice Cloning and Voice Creation. Voice Cloning supports uploading reference audio or directly recording the audio.


| **Voice Cloning** | **Voice Creation** |
|:-------------------:|:-------------------:|
| ![Image 1](src/figures/gradio_TTS.png) | ![Image 2](src/figures/gradio_control.png) |


## **Demos**

Here are some demos generated by Spark-TTS using zero-shot voice cloning. For more demos, visit our [demo page](https://spark-tts.github.io/).

---

<table>
<tr>
<td align="center">
    
**Donald Trump**
</td>
<td align="center">
    
**Zhongli (Genshin Impact)**
</td>
</tr>

<tr>
<td align="center">

[Donald Trump](https://github.com/user-attachments/assets/fb225780-d9fe-44b2-9b2e-54390cb3d8fd)

</td>
<td align="center">
    
[Zhongli](https://github.com/user-attachments/assets/80eeb9c7-0443-4758-a1ce-55ac59e64bd6)

</td>
</tr>
</table>

---

<table>

<tr>
<td align="center">
    
**陈鲁豫 Chen Luyu**
</td>
<td align="center">
    
**杨澜 Yang Lan**
</td>
</tr>

<tr>
<td align="center">
    
[陈鲁豫Chen_Luyu.webm](https://github.com/user-attachments/assets/5c6585ae-830d-47b1-992d-ee3691f48cf4)
</td>
<td align="center">
    
[Yang_Lan.webm](https://github.com/user-attachments/assets/2fb3d00c-abc3-410e-932f-46ba204fb1d7)
</td>
</tr>
</table>

---


<table>
<tr>
<td align="center">
    
**余承东 Richard Yu**
</td>
<td align="center">
    
**马云 Jack Ma**
</td>
</tr>

<tr>
<td align="center">

[Yu_Chengdong.webm](https://github.com/user-attachments/assets/78feca02-84bb-4d3a-a770-0cfd02f1a8da)

</td>
<td align="center">
    
[Ma_Yun.webm](https://github.com/user-attachments/assets/2d54e2eb-cec4-4c2f-8c84-8fe587da321b)

</td>
</tr>
</table>

---


<table>
<tr>
<td align="center">
    
**刘德华 Andy Lau**
</td>
<td align="center">

**徐志胜 Xu Zhisheng**
</td>
</tr>

<tr>
<td align="center">

[Liu_Dehua.webm](https://github.com/user-attachments/assets/195b5e97-1fee-4955-b954-6d10fa04f1d7)

</td>
<td align="center">
    
[Xu_Zhisheng.webm](https://github.com/user-attachments/assets/dd812af9-76bd-4e26-9988-9cdb9ccbb87b)

</td>
</tr>
</table>


---

<table>
<tr>
<td align="center">
    
**哪吒 Nezha**
</td>
<td align="center">
    
**李靖 Li Jing**
</td>
</tr>

<tr>
<td align="center">

[Ne_Zha.webm](https://github.com/user-attachments/assets/8c608037-a17a-46d4-8588-4db34b49ed1d)
</td>
<td align="center">

[Li_Jing.webm](https://github.com/user-attachments/assets/aa8ba091-097c-4156-b4e3-6445da5ea101)

</td>
</tr>
</table>


## To-Do List

- [ ] Release the Spark-TTS paper.
- [ ] Release the training code.
- [ ] Release the training dataset, VoxBox.