Spaces:
Sleeping
Sleeping
Commit
·
9557a09
1
Parent(s):
189d865
resnet deleted
Browse files- app.py +8 -117
- model/categories_places365.txt +0 -3
- model/resnet50_places365.pth.tar +0 -3
- requirements.txt +3 -6
app.py
CHANGED
@@ -5,113 +5,27 @@ import torch
|
|
5 |
from ultralytics import YOLO
|
6 |
import numpy as np
|
7 |
import os
|
8 |
-
from torchvision import models, transforms
|
9 |
-
import re
|
10 |
-
import logging
|
11 |
-
|
12 |
-
# Configure logging
|
13 |
-
logging.basicConfig(filename='app.log', level=logging.INFO,
|
14 |
-
format='%(asctime)s:%(levelname)s:%(message)s')
|
15 |
-
|
16 |
-
# Load Pillow version
|
17 |
from PIL import __version__ as PIL_VERSION
|
18 |
print(f"Pillow version: {PIL_VERSION}")
|
19 |
|
20 |
-
# Paths to models and labels
|
21 |
MODEL_PATH = "model/231220_detect_lr_0001_640_brightness.pt"
|
22 |
-
SCENE_MODEL_PATH = "model/resnet50_places365.pth.tar" # Updated path
|
23 |
-
SCENE_LABELS_PATH = "model/categories_places365.txt" # Updated path
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
26 |
if not os.path.exists(MODEL_PATH):
|
27 |
raise FileNotFoundError(f"YOLO model not found at '{MODEL_PATH}'.")
|
28 |
-
if not os.path.exists(SCENE_MODEL_PATH):
|
29 |
-
raise FileNotFoundError(f"Scene classification model not found at '{SCENE_MODEL_PATH}'.")
|
30 |
-
if not os.path.exists(SCENE_LABELS_PATH):
|
31 |
-
raise FileNotFoundError(f"Scene classification labels not found at '{SCENE_LABELS_PATH}'.")
|
32 |
|
33 |
# Load the YOLO model
|
34 |
model = YOLO(MODEL_PATH)
|
35 |
print("YOLO model loaded.")
|
36 |
|
37 |
-
# Load the scene classification model
|
38 |
-
def load_scene_classification_model():
|
39 |
-
# Load pre-trained ResNet50 model
|
40 |
-
scene_model = models.resnet50(num_classes=365)
|
41 |
-
checkpoint = torch.load(SCENE_MODEL_PATH, map_location=torch.device('cpu'))
|
42 |
-
# Remove 'module.' prefix if present
|
43 |
-
state_dict = {k.replace('module.', ''): v for k, v in checkpoint['state_dict'].items()}
|
44 |
-
scene_model.load_state_dict(state_dict)
|
45 |
-
scene_model.eval()
|
46 |
-
return scene_model
|
47 |
-
|
48 |
-
scene_model = load_scene_classification_model()
|
49 |
-
print("Scene classification model loaded.")
|
50 |
-
|
51 |
-
# Load class labels
|
52 |
-
with open(SCENE_LABELS_PATH) as class_file:
|
53 |
-
classes = class_file.read().splitlines()
|
54 |
-
|
55 |
-
# Correct parsing of class labels
|
56 |
-
# Each line is in the format '/a/beach 48', so we extract 'beach'
|
57 |
-
class_labels = [line.split(' ')[0][3:].lower() for line in classes]
|
58 |
-
|
59 |
-
# Debug: Print some class labels to verify parsing
|
60 |
-
print("Sample Class Labels:")
|
61 |
-
for idx in range(10):
|
62 |
-
print(f"{idx}: {class_labels[idx]}")
|
63 |
-
|
64 |
-
# Define image transformations for scene classification
|
65 |
-
scene_transform = transforms.Compose([
|
66 |
-
transforms.Resize((224, 224)),
|
67 |
-
transforms.ToTensor(),
|
68 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], # ImageNet means
|
69 |
-
std=[0.229, 0.224, 0.225]) # ImageNet stds
|
70 |
-
])
|
71 |
-
|
72 |
-
def is_beach_scene(input_image, model, class_labels, transform, threshold=0.2):
|
73 |
-
"""
|
74 |
-
Classify the scene of the input image and check if it's a beach.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
input_image (PIL.Image): The uploaded image.
|
78 |
-
model (torch.nn.Module): The pre-trained scene classification model.
|
79 |
-
class_labels (list): List of class labels.
|
80 |
-
transform (torchvision.transforms): Image transformations.
|
81 |
-
threshold (float): Confidence threshold for beach classification.
|
82 |
-
|
83 |
-
Returns:
|
84 |
-
bool: True if the image is classified as beach with confidence >= threshold, else False.
|
85 |
-
float: Confidence score for the beach classification.
|
86 |
-
"""
|
87 |
-
image = transform(input_image).unsqueeze(0) # Add batch dimension
|
88 |
-
with torch.no_grad():
|
89 |
-
outputs = model(image)
|
90 |
-
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
91 |
-
confidence, predicted = torch.max(probabilities, 1)
|
92 |
-
predicted_class = class_labels[predicted.item()]
|
93 |
-
predicted_class_lower = predicted_class.lower()
|
94 |
-
|
95 |
-
# Check if 'beach' or 'sand' is in the predicted class and exclude 'desert'
|
96 |
-
is_beach = (('beach' in predicted_class_lower or 'sand' in predicted_class_lower) and
|
97 |
-
('desert' not in predicted_class_lower) and
|
98 |
-
confidence.item() >= threshold)
|
99 |
-
|
100 |
-
# Log the classification result
|
101 |
-
logging.info(f"Predicted Class: {predicted_class}, Confidence: {confidence.item():.4f}, Is Beach: {is_beach}")
|
102 |
-
|
103 |
-
# Debug: Print predicted class and confidence
|
104 |
-
print(f"Predicted Class: {predicted_class}, Confidence: {confidence.item():.4f}")
|
105 |
-
print(f"Is Beach: {is_beach}")
|
106 |
-
|
107 |
-
return is_beach, confidence.item()
|
108 |
-
|
109 |
def detect_plastic_pellets(input_image, threshold=0.5):
|
110 |
"""
|
111 |
-
Perform plastic pellet detection using our customized model
|
112 |
"""
|
113 |
if input_image is None:
|
114 |
-
logging.warning("No image uploaded.")
|
115 |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0))
|
116 |
draw = ImageDraw.Draw(error_image)
|
117 |
try:
|
@@ -122,24 +36,7 @@ def detect_plastic_pellets(input_image, threshold=0.5):
|
|
122 |
return error_image
|
123 |
|
124 |
try:
|
125 |
-
print("Starting
|
126 |
-
logging.info("Starting scene classification...")
|
127 |
-
is_beach, scene_confidence = is_beach_scene(input_image, scene_model, class_labels, scene_transform, threshold=0.2)
|
128 |
-
|
129 |
-
if not is_beach:
|
130 |
-
logging.warning("Image not recognized as a beach.")
|
131 |
-
error_image = Image.new('RGB', (500, 150), color=(255, 165, 0)) # Increased height for more text
|
132 |
-
draw = ImageDraw.Draw(error_image)
|
133 |
-
try:
|
134 |
-
font = ImageFont.truetype("arial.ttf", size=15)
|
135 |
-
except IOError:
|
136 |
-
font = ImageFont.load_default()
|
137 |
-
message = f"Image is not recognized as a beach.\nConfidence: {scene_confidence:.2f}"
|
138 |
-
draw.text((10, 40), message, fill=(0, 0, 0), font=font)
|
139 |
-
return error_image
|
140 |
-
|
141 |
-
print("Scene classification passed. Starting detection...")
|
142 |
-
logging.info("Scene classification passed. Starting detection...")
|
143 |
input_image.thumbnail((1024, 1024), Image.LANCZOS)
|
144 |
img = np.array(input_image.convert("RGB"))
|
145 |
|
@@ -172,20 +69,14 @@ def detect_plastic_pellets(input_image, threshold=0.5):
|
|
172 |
|
173 |
detection_made = True
|
174 |
|
175 |
-
if detection_made:
|
176 |
-
logging.info("Plastic pellets detected.")
|
177 |
-
print("Plastic pellets detected.")
|
178 |
-
else:
|
179 |
-
logging.info("No plastic pellets detected.")
|
180 |
draw.text((10, 10), "No plastic pellets detected.", fill=(255, 0, 0), font=font)
|
181 |
return input_image
|
182 |
|
183 |
print("Detection completed.")
|
184 |
-
logging.info("Detection completed.")
|
185 |
return input_image
|
186 |
|
187 |
except Exception as e:
|
188 |
-
logging.error(f"Detection error: {str(e)}")
|
189 |
print(f"Detection error: {str(e)}")
|
190 |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0))
|
191 |
draw = ImageDraw.Draw(error_image)
|
@@ -244,4 +135,4 @@ def main():
|
|
244 |
demo.launch()
|
245 |
|
246 |
if __name__ == "__main__":
|
247 |
-
|
|
|
5 |
from ultralytics import YOLO
|
6 |
import numpy as np
|
7 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from PIL import __version__ as PIL_VERSION
|
9 |
print(f"Pillow version: {PIL_VERSION}")
|
10 |
|
|
|
11 |
MODEL_PATH = "model/231220_detect_lr_0001_640_brightness.pt"
|
|
|
|
|
12 |
|
13 |
+
# Define the confidence threshold (used if not using the slider)
|
14 |
+
# CONF_THRESHOLD = 0.5 # Optional: Remove if using the slider
|
15 |
+
|
16 |
+
# Verify the model path
|
17 |
if not os.path.exists(MODEL_PATH):
|
18 |
raise FileNotFoundError(f"YOLO model not found at '{MODEL_PATH}'.")
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Load the YOLO model
|
21 |
model = YOLO(MODEL_PATH)
|
22 |
print("YOLO model loaded.")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def detect_plastic_pellets(input_image, threshold=0.5):
|
25 |
"""
|
26 |
+
Perform plastic pellet detection using our customized model.
|
27 |
"""
|
28 |
if input_image is None:
|
|
|
29 |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0))
|
30 |
draw = ImageDraw.Draw(error_image)
|
31 |
try:
|
|
|
36 |
return error_image
|
37 |
|
38 |
try:
|
39 |
+
print("Starting detection with threshold:", threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
input_image.thumbnail((1024, 1024), Image.LANCZOS)
|
41 |
img = np.array(input_image.convert("RGB"))
|
42 |
|
|
|
69 |
|
70 |
detection_made = True
|
71 |
|
72 |
+
if not detection_made:
|
|
|
|
|
|
|
|
|
73 |
draw.text((10, 10), "No plastic pellets detected.", fill=(255, 0, 0), font=font)
|
74 |
return input_image
|
75 |
|
76 |
print("Detection completed.")
|
|
|
77 |
return input_image
|
78 |
|
79 |
except Exception as e:
|
|
|
80 |
print(f"Detection error: {str(e)}")
|
81 |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0))
|
82 |
draw = ImageDraw.Draw(error_image)
|
|
|
135 |
demo.launch()
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
+
main()
|
model/categories_places365.txt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2affba635eb657e7ca95f4e6cc69bd9fac29ef4c32aeb83cafdfcd06ec6a1ea6
|
3 |
-
size 6833
|
|
|
|
|
|
|
|
model/resnet50_places365.pth.tar
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:46529c86902bd0cfb0ea562a30b2850c28d2620d96282b3db9c318e1d774f6c5
|
3 |
-
size 97270159
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
ultralytics>=8.0.0
|
5 |
-
pillow>=10.0.0
|
6 |
-
numpy>=1.23.0
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0689b23c5d7d1c089c59d97ac59bee19bec098c7857c300e9df9815cc1840d63
|
3 |
+
size 96
|
|
|
|
|
|