Spaces:
Sleeping
Sleeping
Commit
Β·
eb9bd6c
1
Parent(s):
065086c
counting added
Browse files
app.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
# app.py
|
2 |
import gradio as gr
|
3 |
from PIL import Image, ImageDraw, ImageFont
|
4 |
-
import torch
|
5 |
from ultralytics import YOLO
|
6 |
import numpy as np
|
7 |
import os
|
8 |
-
from PIL import __version__ as PIL_VERSION
|
9 |
-
print(f"Pillow version: {PIL_VERSION}")
|
10 |
|
11 |
MODEL_PATH = "model/231220_detect_lr_0001_640_brightness.pt"
|
12 |
|
@@ -17,7 +14,8 @@ print("YOLO model loaded.")
|
|
17 |
|
18 |
def detect_plastic_pellets(input_image, threshold=0.5):
|
19 |
"""
|
20 |
-
Perform plastic pellet detection using our customized model.
|
|
|
21 |
"""
|
22 |
if input_image is None:
|
23 |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0))
|
@@ -27,7 +25,7 @@ def detect_plastic_pellets(input_image, threshold=0.5):
|
|
27 |
except IOError:
|
28 |
font = ImageFont.load_default()
|
29 |
draw.text((10, 40), "Please upload a valid image.", fill=(255, 255, 255), font=font)
|
30 |
-
return error_image
|
31 |
|
32 |
try:
|
33 |
print("Starting detection with threshold:", threshold)
|
@@ -42,6 +40,7 @@ def detect_plastic_pellets(input_image, threshold=0.5):
|
|
42 |
font = ImageFont.load_default()
|
43 |
|
44 |
detection_made = False
|
|
|
45 |
|
46 |
for result in results:
|
47 |
for box in result.boxes:
|
@@ -58,17 +57,19 @@ def detect_plastic_pellets(input_image, threshold=0.5):
|
|
58 |
|
59 |
label = f"{name} {confidence:.2f}"
|
60 |
text_width, text_height = font.getbbox(label)[2:]
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
detection_made = True
|
|
|
65 |
|
66 |
if not detection_made:
|
67 |
draw.text((10, 10), "No plastic pellets detected.", fill=(255, 0, 0), font=font)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
return input_image
|
72 |
|
73 |
except Exception as e:
|
74 |
print(f"Detection error: {str(e)}")
|
@@ -79,7 +80,7 @@ def detect_plastic_pellets(input_image, threshold=0.5):
|
|
79 |
except IOError:
|
80 |
font = ImageFont.load_default()
|
81 |
draw.text((10, 40), f"Error: {str(e)}", fill=(255, 255, 255), font=font)
|
82 |
-
return error_image
|
83 |
|
84 |
def main():
|
85 |
with gr.Blocks(css=".gradio-container {max-width: 800px}") as demo:
|
@@ -93,10 +94,17 @@ def main():
|
|
93 |
with gr.Row():
|
94 |
with gr.Column():
|
95 |
input_image = gr.Image(type="pil", label="π Upload or Select Beach Image", interactive=True)
|
96 |
-
examples = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
gr.Examples(examples=examples, inputs=input_image, label="Or choose one of these images")
|
98 |
|
99 |
-
#
|
100 |
confidence_threshold = gr.Slider(
|
101 |
minimum=0.0,
|
102 |
maximum=1.0,
|
@@ -109,7 +117,17 @@ def main():
|
|
109 |
submit_button = gr.Button("π Detect Plastic Pellets")
|
110 |
|
111 |
with gr.Column():
|
112 |
-
output_image = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
gr.Markdown(
|
115 |
"""
|
@@ -121,7 +139,7 @@ def main():
|
|
121 |
submit_button.click(
|
122 |
fn=detect_plastic_pellets,
|
123 |
inputs=[input_image, confidence_threshold],
|
124 |
-
outputs=output_image,
|
125 |
api_name="detect",
|
126 |
show_progress=True
|
127 |
)
|
@@ -129,4 +147,4 @@ def main():
|
|
129 |
demo.launch()
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
-
|
|
|
1 |
# app.py
|
2 |
import gradio as gr
|
3 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
4 |
from ultralytics import YOLO
|
5 |
import numpy as np
|
6 |
import os
|
|
|
|
|
7 |
|
8 |
MODEL_PATH = "model/231220_detect_lr_0001_640_brightness.pt"
|
9 |
|
|
|
14 |
|
15 |
def detect_plastic_pellets(input_image, threshold=0.5):
|
16 |
"""
|
17 |
+
Perform plastic pellet detection using our customized YOLO model.
|
18 |
+
Returns the processed image and the number of detections.
|
19 |
"""
|
20 |
if input_image is None:
|
21 |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0))
|
|
|
25 |
except IOError:
|
26 |
font = ImageFont.load_default()
|
27 |
draw.text((10, 40), "Please upload a valid image.", fill=(255, 255, 255), font=font)
|
28 |
+
return error_image, 0 # Returning 0 detections
|
29 |
|
30 |
try:
|
31 |
print("Starting detection with threshold:", threshold)
|
|
|
40 |
font = ImageFont.load_default()
|
41 |
|
42 |
detection_made = False
|
43 |
+
detection_count = 0 # Initialize detection count
|
44 |
|
45 |
for result in results:
|
46 |
for box in result.boxes:
|
|
|
57 |
|
58 |
label = f"{name} {confidence:.2f}"
|
59 |
text_width, text_height = font.getbbox(label)[2:]
|
60 |
+
# Ensure text does not go above the image
|
61 |
+
text_y = max(y1 - text_height, 0)
|
62 |
+
draw.rectangle(((x1, text_y), (x1 + text_width, y1)), fill=color)
|
63 |
+
draw.text((x1, text_y), label, fill=(255, 255, 255), font=font)
|
64 |
|
65 |
detection_made = True
|
66 |
+
detection_count += 1 # Increment detection count
|
67 |
|
68 |
if not detection_made:
|
69 |
draw.text((10, 10), "No plastic pellets detected.", fill=(255, 0, 0), font=font)
|
70 |
+
|
71 |
+
print("Detection completed. Total detections:", detection_count)
|
72 |
+
return input_image, detection_count
|
|
|
73 |
|
74 |
except Exception as e:
|
75 |
print(f"Detection error: {str(e)}")
|
|
|
80 |
except IOError:
|
81 |
font = ImageFont.load_default()
|
82 |
draw.text((10, 40), f"Error: {str(e)}", fill=(255, 255, 255), font=font)
|
83 |
+
return error_image, 0 # Returning 0 detections on error
|
84 |
|
85 |
def main():
|
86 |
with gr.Blocks(css=".gradio-container {max-width: 800px}") as demo:
|
|
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
input_image = gr.Image(type="pil", label="π Upload or Select Beach Image", interactive=True)
|
97 |
+
examples = [
|
98 |
+
'images/image1.bmp',
|
99 |
+
'images/image2.bmp',
|
100 |
+
'images/image3.bmp',
|
101 |
+
'images/image4.bmp',
|
102 |
+
'images/image5.bmp',
|
103 |
+
'images/image6.bmp'
|
104 |
+
]
|
105 |
gr.Examples(examples=examples, inputs=input_image, label="Or choose one of these images")
|
106 |
|
107 |
+
# Slider for confidence threshold
|
108 |
confidence_threshold = gr.Slider(
|
109 |
minimum=0.0,
|
110 |
maximum=1.0,
|
|
|
117 |
submit_button = gr.Button("π Detect Plastic Pellets")
|
118 |
|
119 |
with gr.Column():
|
120 |
+
output_image = gr.Image(
|
121 |
+
type="pil",
|
122 |
+
label="β
Detection Result",
|
123 |
+
interactive=False,
|
124 |
+
show_download_button=True
|
125 |
+
)
|
126 |
+
detection_count = gr.Text(
|
127 |
+
value="Detections: 0",
|
128 |
+
label="π’ Number of Detections",
|
129 |
+
interactive=False
|
130 |
+
)
|
131 |
|
132 |
gr.Markdown(
|
133 |
"""
|
|
|
139 |
submit_button.click(
|
140 |
fn=detect_plastic_pellets,
|
141 |
inputs=[input_image, confidence_threshold],
|
142 |
+
outputs=[output_image, detection_count],
|
143 |
api_name="detect",
|
144 |
show_progress=True
|
145 |
)
|
|
|
147 |
demo.launch()
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
+
main()
|