# app.py import gradio as gr from PIL import Image, ImageDraw, ImageFont from ultralytics import YOLO import numpy as np import os MODEL_PATH = "model/231220_detect_lr_0001_640_brightness.pt" if not os.path.exists(MODEL_PATH): raise FileNotFoundError(f"YOLO model not found at '{MODEL_PATH}'.") model = YOLO(MODEL_PATH) print("YOLO model loaded.") def detect_plastic_pellets(input_image, threshold=0.5): """ Perform plastic pellet detection using our customized YOLO model. Returns the processed image and the number of detections. """ if input_image is None: error_image = Image.new('RGB', (500, 100), color=(255, 0, 0)) draw = ImageDraw.Draw(error_image) try: font = ImageFont.truetype("arial.ttf", size=15) except IOError: font = ImageFont.load_default() draw.text((10, 40), "Please upload a valid image.", fill=(255, 255, 255), font=font) return error_image, 0 # Returning 0 detections try: print("Starting detection with threshold:", threshold) input_image.thumbnail((1024, 1024), Image.LANCZOS) img = np.array(input_image.convert("RGB")) results = model(img) draw = ImageDraw.Draw(input_image) try: font = ImageFont.truetype("arial.ttf", size=15) except IOError: font = ImageFont.load_default() detection_made = False detection_count = 0 # Initialize detection count for result in results: for box in result.boxes: confidence = box.conf[0].item() if confidence < threshold: continue x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) cls = int(box.cls[0].item()) name = model.names[cls] if model.names else "Object" color = (255, 0, 0) draw.rectangle(((x1, y1), (x2, y2)), outline=color, width=2) label = f"{name} {confidence:.2f}" text_width, text_height = font.getbbox(label)[2:] # Ensure text does not go above the image text_y = max(y1 - text_height, 0) draw.rectangle(((x1, text_y), (x1 + text_width, y1)), fill=color) draw.text((x1, text_y), label, fill=(255, 255, 255), font=font) detection_made = True detection_count += 1 # Increment detection count if not detection_made: draw.text((10, 10), "No plastic pellets detected.", fill=(255, 0, 0), font=font) print("Detection completed. Total detections:", detection_count) return input_image, detection_count except Exception as e: print(f"Detection error: {str(e)}") error_image = Image.new('RGB', (500, 100), color=(255, 0, 0)) draw = ImageDraw.Draw(error_image) try: font = ImageFont.truetype("arial.ttf", size=15) except IOError: font = ImageFont.load_default() draw.text((10, 40), f"Error: {str(e)}", fill=(255, 255, 255), font=font) return error_image, 0 # Returning 0 detections on error def main(): with gr.Blocks(css=".gradio-container {max-width: 800px}") as demo: gr.Markdown( """
Help us clean up beaches from plastic pellets! Upload your beach photos or choose from our samples, and contribute to data collection for a cleaner environment.
""" ) with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="🌊 Upload or Select Beach Image", interactive=True) examples = [ 'images/image1.bmp', 'images/image2.bmp', 'images/image3.bmp', 'images/image4.bmp', 'images/image5.bmp', 'images/image6.bmp' ] gr.Examples(examples=examples, inputs=input_image, label="Or choose one of these images") # Slider for confidence threshold confidence_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold", info="Adjust the confidence threshold for displaying detections." ) submit_button = gr.Button("🔍 Detect Plastic Pellets") with gr.Column(): output_image = gr.Image( type="pil", label="✅ Detection Result", interactive=False, show_download_button=True ) detection_count = gr.Text( value="Detections: 0", label="🔢 Number of Detections", interactive=False ) gr.Markdown( """ ---© 2024 Beach Clean-Up Initiative.
""" ) submit_button.click( fn=detect_plastic_pellets, inputs=[input_image, confidence_threshold], outputs=[output_image, detection_count], api_name="detect", show_progress=True ) demo.launch() if __name__ == "__main__": main()