Update app.py
Browse files
app.py
CHANGED
@@ -6,19 +6,11 @@ model_name = "ministral/Ministral-3b-instruct"
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
-
def generate_response(prompt, max_length=
|
10 |
inputs = tokenizer(prompt, return_tensors="pt")
|
11 |
-
outputs = model.generate(
|
12 |
-
**inputs,
|
13 |
-
max_length=max_length,
|
14 |
-
do_sample=True,
|
15 |
-
temperature=0.9,
|
16 |
-
top_p=0.95,
|
17 |
-
no_repeat_ngram_size=0
|
18 |
-
)
|
19 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
|
21 |
-
|
22 |
def chat(message, history):
|
23 |
history_text = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])
|
24 |
prompt = f"{history_text}\nHuman: {message}\nAI:"
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
+
def generate_response(prompt, max_length=400):
|
10 |
inputs = tokenizer(prompt, return_tensors="pt")
|
11 |
+
outputs = model.generate(**inputs, max_length=max_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
13 |
|
|
|
14 |
def chat(message, history):
|
15 |
history_text = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])
|
16 |
prompt = f"{history_text}\nHuman: {message}\nAI:"
|