Spaces:
Running
Running
File size: 8,814 Bytes
68ec988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
from langchain.chains import LLMChain
# chat_chain = LLMChain(
# llm=llm,
# prompt=chat_prompt,
# memory=memory,
# verbose=True # Enable verbose logging for debugging
# )
import os
import psycopg2
import praw
import json
from datetime import datetime, timedelta
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate
from langchain.chains import ConversationChain, LLMChain
from langchain.memory import ConversationBufferMemory
load_dotenv()
# Initialize the LLM via LangChain (using Groq)
llm = ChatGroq(
groq_api_key=os.getenv("GROQ_API_KEY"),
# model_name=os.getenv("MODEL_NAME"),
model_name= "meta-llama/llama-4-maverick-17b-128e-instruct",
temperature=0.2
)
# Embedding Model
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# Reddit API Setup
reddit = praw.Reddit(
client_id=os.getenv("REDDIT_CLIENT_ID"),
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
user_agent=os.getenv("REDDIT_USER_AGENT")
)
# Database connection function
import psycopg2
import os
def get_db_conn():
return psycopg2.connect(os.getenv("DATABASE_URL"))
# Set up the database schema: store raw post text, comments, computed embedding, and metadata.
def setup_db():
conn = get_db_conn()
cur = conn.cursor()
try:
cur.execute(""" -- remove EXTENSION line
CREATE TABLE IF NOT EXISTS reddit_posts (
id SERIAL PRIMARY KEY,
reddit_id VARCHAR(50) UNIQUE,
keyword TEXT,
title TEXT,
post_text TEXT,
comments JSONB,
created_at TIMESTAMP,
embedding VECTOR(384),
metadata JSONB
);
CREATE INDEX IF NOT EXISTS idx_keyword_created_at ON reddit_posts(keyword, created_at DESC);
""")
conn.commit()
except Exception as e:
print("DB Setup Error:", e)
finally:
cur.close()
conn.close()
# def setup_db():
# conn = get_db_conn()
# cur = conn.cursor()
# cur.execute("""
# CREATE EXTENSION IF NOT EXISTS vector;
# CREATE TABLE IF NOT EXISTS reddit_posts (
# id SERIAL PRIMARY KEY,
# reddit_id VARCHAR(50) UNIQUE,
# keyword TEXT,
# title TEXT,
# post_text TEXT,
# comments JSONB,
# created_at TIMESTAMP,
# embedding VECTOR(384),
# metadata JSONB
# );
# CREATE INDEX IF NOT EXISTS idx_keyword_created_at ON reddit_posts(keyword, created_at DESC);
# """)
# conn.commit()
# cur.close()
# conn.close()
# Utility: Check if the keyword appears in the post title, selftext, or any comment.
def keyword_in_post_or_comments(post, keyword):
keyword_lower = keyword.lower()
combined_text = (post.title + " " + post.selftext).lower()
if keyword_lower in combined_text:
return True
post.comments.replace_more(limit=None)
for comment in post.comments.list():
if keyword_lower in comment.body.lower():
return True
return False
# Fetch Reddit posts if the keyword is in the post or any comment.
# This version iterates over posts until reaching posts older than the specified day range.
def fetch_reddit_data(keyword, days=7, limit=None):
end_time = datetime.utcnow()
start_time = end_time - timedelta(days=days)
subreddit = reddit.subreddit("all")
posts_generator = subreddit.search(keyword, sort="new", time_filter="all", limit=limit)
data = []
for post in posts_generator:
created = datetime.utcfromtimestamp(post.created_utc)
if created < start_time:
break # Since sorted by new, we break once older posts are encountered.
if not keyword_in_post_or_comments(post, keyword):
continue
post.comments.replace_more(limit=None)
comments = [comment.body for comment in post.comments.list()]
combined_text = f"{post.title}\n{post.selftext}\n{' '.join(comments)}"
embedding = embedder.encode(combined_text).tolist()
metadata = {
"url": post.url,
"subreddit": post.subreddit.display_name,
"comments_count": len(comments)
}
data.append({
"reddit_id": post.id,
"keyword": keyword,
"title": post.title,
"post_text": post.selftext,
"comments": comments,
"created_at": created,
"embedding": embedding,
"metadata": metadata
})
save_to_db(data)
# Save posts data into PostgreSQL.
def save_to_db(posts):
conn = get_db_conn()
cur = conn.cursor()
for post in posts:
cur.execute("""
INSERT INTO reddit_posts
(reddit_id, keyword, title, post_text, comments, created_at, embedding, metadata)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
ON CONFLICT DO NOTHING;
""", (
post["reddit_id"],
post["keyword"],
post["title"],
post["post_text"],
json.dumps(post["comments"]),
post["created_at"],
post["embedding"],
json.dumps(post["metadata"])
))
conn.commit()
cur.close()
conn.close()
# Retrieve context from the DB.
# Updated retrieval: if summarization intent is detected, retrieve more posts.
def retrieve_context(question, keyword, reddit_id=None, top_k=10):
lower_q = question.lower()
# Check for summarization intent.
if any(word in lower_q for word in ["summarize", "overview", "all posts"]):
requested_top_k = 50
else:
requested_top_k = top_k
# Retrieve posts based on query embedding.
query_embedding = embedder.encode(question).tolist()
query_embedding_str = "[" + ",".join(map(str, query_embedding)) + "]"
conn = get_db_conn()
cur = conn.cursor()
if reddit_id:
cur.execute("""
SELECT title, post_text, comments FROM reddit_posts
WHERE reddit_id = %s;
""", (reddit_id,))
else:
cur.execute("""
SELECT title, post_text, comments FROM reddit_posts
WHERE keyword = %s
ORDER BY embedding <-> %s::vector LIMIT %s;
""", (keyword, query_embedding_str, requested_top_k))
results = cur.fetchall()
conn.close()
# If there are fewer posts than requested and none were retrieved by vector search,
# fall back to retrieving all posts for that keyword.
if not results:
conn = get_db_conn()
cur = conn.cursor()
cur.execute("""
SELECT title, post_text, comments FROM reddit_posts
WHERE keyword = %s ORDER BY created_at DESC;
""", (keyword,))
results = cur.fetchall()
conn.close()
return results
# --- New Summarization Step for Handling Long Context ---
# Create a summarization chain to compress the context if it exceeds a token/character threshold.
summarize_prompt = ChatPromptTemplate.from_template("""
You are a summarizer. Summarize the following context from Reddit posts into a concise summary that preserves the key insights. Do not add extra commentary.
Context:
{context}
Summary:
""")
summarize_chain = LLMChain(llm=llm, prompt=summarize_prompt)
# Set up conversation memory and chain.
memory = ConversationBufferMemory(memory_key="chat_history")
# Updated prompt: we now expect a single input field "input"
chat_prompt = ChatPromptTemplate.from_template("""
Chat History:
{chat_history}
Context from Reddit and User Question:
{input}
Act as an Professional Assistant as incremental chat agent and also give reasioning and Answer clearly based on context and chat history, your response should be valid and concise, and relavant .
""")
chat_chain = LLMChain(
llm=llm,
prompt=chat_prompt,
memory=memory,
verbose=True # Enable verbose logging for debugging
)
# Get chatbot response by merging context and question into a single input.
# Updated get_chatbot_response to handle summarization if context is too long.
def get_chatbot_response(question, keyword, reddit_id=None):
context_posts = retrieve_context(question, keyword, reddit_id)
context = "\n\n".join([f"{p[0]}:\n{p[1]}" for p in context_posts])
# Set a threshold (e.g., 3000 characters); if context length exceeds it, compress the context.
if len(context) > 3000:
context = summarize_chain.run({"context": context})
combined_input = f"Context:\n{context}\n\nUser Question: {question}"
response = chat_chain.run({"input": combined_input})
return response, context_posts |