waghib's picture
Update app.py
ee95781 verified
raw
history blame contribute delete
24.3 kB
import os
import json
import glob
from pathlib import Path
import torch
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
import numpy as np
from sentence_transformers import util
import time
# Set device for model (CUDA if available)
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load environment variables - works for both local and Hugging Face Spaces
load_dotenv()
# Set up the clinical assistant LLM
# Try to get API key from Hugging Face Spaces secrets first, then fall back to .env file
try:
# For Hugging Face Spaces
from huggingface_hub.inference_api import InferenceApi
import os
groq_api_key = os.environ.get('GROQ_API_KEY')
# If not found in environment, try to get from st.secrets (Streamlit Cloud/Spaces)
if not groq_api_key and hasattr(st, 'secrets') and 'GROQ_API_KEY' in st.secrets:
groq_api_key = st.secrets['GROQ_API_KEY']
if not groq_api_key:
st.warning("API Key is not set in the secrets. Using a placeholder for UI demonstration.")
# For UI demonstration without API key
class MockLLM:
def invoke(self, prompt):
return {"answer": "This is a placeholder response. Please set up your GROQ_API_KEY to get real responses."}
llm = MockLLM()
else:
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama-3.3-70b-versatile")
except Exception as e:
st.error(f"Error setting up LLM: {str(e)}")
class MockLLM:
def invoke(self, prompt):
return {"answer": f"Error setting up LLM: {str(e)}. Please check your API key configuration."}
llm = MockLLM()
# Set up embeddings for clinical context (Bio_ClinicalBERT)
embeddings = HuggingFaceEmbeddings(
model_name="emilyalsentzer/Bio_ClinicalBERT",
model_kwargs={"device": device}
)
def load_clinical_data():
"""Load both flowcharts and patient cases"""
docs = []
# Get the absolute path to the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Try to handle potential errors with file loading
try:
# Load diagnosis flowcharts
flowchart_dir = os.path.join(current_dir, "Diagnosis_flowchart")
if os.path.exists(flowchart_dir):
for fpath in glob.glob(os.path.join(flowchart_dir, "*.json")):
try:
with open(fpath, 'r', encoding='utf-8') as f:
data = json.load(f)
content = f"""
DIAGNOSTIC FLOWCHART: {Path(fpath).stem}
Diagnostic Path: {data.get('diagnostic', 'N/A')}
Key Criteria: {data.get('knowledge', 'N/A')}
"""
docs.append(Document(
page_content=content,
metadata={"source": fpath, "type": "flowchart"}
))
except Exception as e:
st.warning(f"Error loading flowchart file {fpath}: {str(e)}")
else:
st.warning(f"Flowchart directory not found at {flowchart_dir}")
# Load patient cases
finished_dir = os.path.join(current_dir, "Finished")
if os.path.exists(finished_dir):
for category_dir in glob.glob(os.path.join(finished_dir, "*")):
if os.path.isdir(category_dir):
for case_file in glob.glob(os.path.join(category_dir, "*.json")):
try:
with open(case_file, 'r', encoding='utf-8') as f:
case_data = json.load(f)
notes = "\n".join(
f"{k}: {v}" for k, v in case_data.items() if k.startswith("input")
)
docs.append(Document(
page_content=f"""
PATIENT CASE: {Path(case_file).stem}
Category: {Path(category_dir).name}
Notes: {notes}
""",
metadata={"source": case_file, "type": "patient_case"}
))
except Exception as e:
st.warning(f"Error loading case file {case_file}: {str(e)}")
else:
st.warning(f"Finished directory not found at {finished_dir}")
# If no documents were loaded, add a sample document for testing
if not docs:
st.warning("No clinical data files found. Using sample data for demonstration.")
docs.append(Document(
page_content="""SAMPLE CLINICAL DATA: This is sample data for demonstration purposes.
This application requires clinical data files to be present in the correct directories.
Please ensure the Diagnosis_flowchart and Finished directories exist with proper JSON files.""",
metadata={"source": "sample", "type": "sample"}
))
except Exception as e:
st.error(f"Error loading clinical data: {str(e)}")
# Add a fallback document
docs.append(Document(
page_content="Error loading clinical data. This is a fallback document for demonstration purposes.",
metadata={"source": "error", "type": "error"}
))
return docs
def build_vectorstore():
"""Build and return the vectorstore using FAISS"""
documents = load_clinical_data()
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = splitter.split_documents(documents)
vectorstore = FAISS.from_documents(splits, embeddings)
return vectorstore
# Path for saving/loading the vectorstore
def get_vectorstore_path():
"""Get the path for saving/loading the vectorstore"""
current_dir = os.path.dirname(os.path.abspath(__file__))
return os.path.join(current_dir, "vectorstore")
# Initialize vectorstore with disk persistence
@st.cache_resource(show_spinner="Loading clinical knowledge base...")
def get_vectorstore():
"""Get or create the vectorstore with disk persistence"""
vectorstore_path = get_vectorstore_path()
# Try to load from disk first
try:
if os.path.exists(vectorstore_path):
st.info("Loading vectorstore from disk...")
# Set allow_dangerous_deserialization to True since we trust our own vectorstore files
return FAISS.load_local(vectorstore_path, embeddings, allow_dangerous_deserialization=True)
except Exception as e:
st.warning(f"Could not load vectorstore from disk: {str(e)}. Building new vectorstore.")
# If loading fails or doesn't exist, build a new one
st.info("Building new vectorstore...")
vectorstore = build_vectorstore()
# Save to disk for future use
try:
os.makedirs(vectorstore_path, exist_ok=True)
vectorstore.save_local(vectorstore_path)
st.success("Vectorstore saved to disk for future use")
except Exception as e:
st.warning(f"Could not save vectorstore to disk: {str(e)}")
return vectorstore
def run_rag_chat(query, vectorstore):
"""Run the Retrieval-Augmented Generation (RAG) for clinical questions"""
try:
retriever = vectorstore.as_retriever()
prompt_template = ChatPromptTemplate.from_template("""
You are a clinical assistant AI. Based on the following clinical context, provide a reasoned and medically sound answer to the question.
<context>
{context}
</context>
Question: {input}
Answer:
""")
retrieved_docs = retriever.invoke(query, k=3)
retrieved_context = "\n".join([doc.page_content for doc in retrieved_docs])
# Create document chain first
document_chain = create_stuff_documents_chain(llm, prompt_template)
# Then create retrieval chain
chain = create_retrieval_chain(retriever, document_chain)
# Invoke the chain
response = chain.invoke({"input": query})
# Add retrieved documents to response for transparency
response["context"] = retrieved_docs
return response
except Exception as e:
st.error(f"Error in RAG processing: {str(e)}")
# Return a fallback response
return {
"answer": f"I encountered an error processing your query: {str(e)}",
"context": [],
"input": query
}
def calculate_hit_rate(retriever, query, expected_docs, k=3):
"""Calculate the hit rate for top-k retrieved documents"""
retrieved_docs = retriever.get_relevant_documents(query, k=k)
retrieved_contents = [doc.page_content for doc in retrieved_docs]
hits = 0
for expected in expected_docs:
if any(expected in retrieved for retrieved in retrieved_contents):
hits += 1
return hits / len(expected_docs) if expected_docs else 0.0
def evaluate_rag_response(response, embeddings):
"""Evaluate the RAG response for faithfulness and hit rate"""
scores = {}
# Faithfulness: Answer-Context Similarity
answer_embed = embeddings.embed_query(response["answer"])
context_embeds = [embeddings.embed_query(doc.page_content) for doc in response["context"]]
similarities = [util.cos_sim(answer_embed, ctx_embed).item() for ctx_embed in context_embeds]
scores["faithfulness"] = float(np.mean(similarities)) if similarities else 0.0
# Custom Hit Rate Calculation
retriever = response["retriever"]
scores["hit_rate"] = calculate_hit_rate(
retriever,
query=response["input"],
expected_docs=[doc.page_content for doc in response["context"]],
k=3
)
return scores
def main():
"""Main function to run the Streamlit app"""
# Set page configuration
st.set_page_config(
page_title="DiReCT - Clinical Diagnostic Assistant",
page_icon="🩺",
layout="wide",
initial_sidebar_state="expanded"
)
# Load vectorstore only once using session state
if 'vectorstore' not in st.session_state:
with st.spinner("Loading clinical knowledge base... This may take a minute."):
try:
st.session_state.vectorstore = get_vectorstore()
# Use custom styled message without the success icon
st.markdown("<div style='padding:10px 15px;background-color:rgba(40,167,69,0.2);border-radius:5px;border-left:5px solid rgba(40,167,69,0.8);'>Clinical knowledge base loaded successfully!</div>", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error loading knowledge base: {str(e)}")
st.session_state.vectorstore = None
# Custom CSS for modern look with dark theme compatibility
st.markdown("""
<style>
.stApp {max-width: 1200px; margin: 0 auto;}
.css-18e3th9 {padding-top: 2rem;}
.stButton>button {background-color: #3498db; color: white;}
.stButton>button:hover {background-color: #2980b9;}
.chat-message {border-radius: 10px; padding: 10px; margin-bottom: 10px;}
.chat-message-user {background-color: rgba(52, 152, 219, 0.2); color: inherit;}
.chat-message-assistant {background-color: rgba(240, 240, 240, 0.2); color: inherit;}
.source-box {background-color: rgba(255, 255, 255, 0.1); color: inherit; border-radius: 5px; padding: 15px; margin-bottom: 10px; border-left: 5px solid #3498db;}
.metrics-box {background-color: rgba(255, 255, 255, 0.1); color: inherit; border-radius: 5px; padding: 15px; margin-top: 20px;}
.features-container {display: flex; flex-wrap: wrap; gap: 20px; justify-content: center; margin-top: 30px;}
.feature-item {flex: 1 1 calc(50% - 20px); min-width: 300px; display: flex; align-items: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2)); transition: transform 0.3s, box-shadow 0.3s; border: 1px solid rgba(255, 255, 255, 0.1);}
.feature-item:hover {transform: translateY(-5px); box-shadow: 0 10px 20px rgba(0, 0, 0, 0.1);}
.feature-icon {width: 60px; height: 60px; border-radius: 50%; background: linear-gradient(135deg, #3498db, #2980b9); display: flex; align-items: center; justify-content: center; margin-right: 20px; box-shadow: 0 5px 15px rgba(52, 152, 219, 0.3);}
.feature-icon i {font-size: 24px; color: white;}
.feature-content {flex: 1;}
.feature-content h3 {margin-top: 0; margin-bottom: 10px; color: inherit;}
.feature-content p {margin: 0; font-size: 0.9em; color: inherit; opacity: 0.8;}
.input-container {margin-bottom: 20px; padding: 15px; border-radius: 10px; background-color: rgba(255, 255, 255, 0.05); border: 1px solid rgba(255, 255, 255, 0.1);}
</style>
""", unsafe_allow_html=True)
# App states
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'page' not in st.session_state:
st.session_state.page = 'cover'
# Sidebar
with st.sidebar:
st.image("https://img.icons8.com/color/96/000000/caduceus.png", width=80)
st.title("DiReCT")
st.markdown("### Diagnostic Reasoning for Clinical Text")
st.markdown("---")
if st.button("Home", key="home_btn"):
st.session_state.page = 'cover'
if st.button("Diagnostic Assistant", key="assistant_btn"):
st.session_state.page = 'chat'
if st.button("About", key="about_btn"):
st.session_state.page = 'about'
st.markdown("---")
st.markdown("### Model Information")
st.markdown("**Embedding Model:** Bio_ClinicalBERT")
st.markdown("**LLM:** Llama-3.3-70B")
st.markdown("**Vector Store:** FAISS")
# Cover page
if st.session_state.page == 'cover':
# Hero section with animation
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("<h1 style='font-size:3.5em;'>DiReCT</h1>", unsafe_allow_html=True)
st.markdown("<h2 style='font-size:1.8em;color:#3498db;'>Diagnostic Reasoning for Clinical Text</h2>", unsafe_allow_html=True)
st.markdown("""<p style='font-size:1.2em;'>A powerful RAG-based clinical diagnostic assistant that leverages the MIMIC-IV-Ext dataset to provide accurate medical insights and diagnostic reasoning.</p>""", unsafe_allow_html=True)
st.markdown("""<br>""", unsafe_allow_html=True)
if st.button("Get Started", key="get_started"):
st.session_state.page = 'chat'
st.rerun()
with col2:
# Animated medical icon
st.markdown("""
<div style='display:flex;justify-content:center;align-items:center;height:100%;'>
<img src="https://img.icons8.com/color/240/000000/healthcare-and-medical.png" style='max-width:90%;'>
</div>
""", unsafe_allow_html=True)
# Modern Features section with Streamlit native components
st.markdown("<br><br>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align:center;'>Key Features</h2>", unsafe_allow_html=True)
# Create a 2x2 grid for features using Streamlit columns
col1, col2 = st.columns(2)
# Feature 1
with col1:
st.markdown("""
<div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2));
padding: 20px; border-radius: 10px; height: 100%;
border: 1px solid rgba(255, 255, 255, 0.1); margin-bottom: 20px;">
<h3>πŸ” Intelligent Retrieval</h3>
<p>Finds the most relevant clinical information from the MIMIC-IV-Ext dataset</p>
</div>
""", unsafe_allow_html=True)
# Feature 2
with col2:
st.markdown("""
<div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2));
padding: 20px; border-radius: 10px; height: 100%;
border: 1px solid rgba(255, 255, 255, 0.1); margin-bottom: 20px;">
<h3>🧠 Advanced Reasoning</h3>
<p>Applies clinical knowledge to generate accurate diagnostic insights</p>
</div>
""", unsafe_allow_html=True)
# Feature 3
with col1:
st.markdown("""
<div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2));
padding: 20px; border-radius: 10px; height: 100%;
border: 1px solid rgba(255, 255, 255, 0.1);">
<h3>πŸ“„ Source Transparency</h3>
<p>Provides references to all clinical sources used in generating responses</p>
</div>
""", unsafe_allow_html=True)
# Feature 4
with col2:
st.markdown("""
<div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2));
padding: 20px; border-radius: 10px; height: 100%;
border: 1px solid rgba(255, 255, 255, 0.1);">
<h3>πŸŒ“ Dark/Light Theme Compatible</h3>
<p>Optimized interface that works seamlessly in both dark and light themes</p>
</div>
""", unsafe_allow_html=True)
# Chat interface
elif st.session_state.page == 'chat':
# Initialize session state for input if not exists
if 'user_input' not in st.session_state:
st.session_state.user_input = ""
# Header with clear button
col1, col2 = st.columns([3, 1])
with col1:
st.markdown("<h1>Clinical Diagnostic Assistant</h1>", unsafe_allow_html=True)
with col2:
# Add a clear button in the header
if st.button("πŸ—‘οΈ Clear Chat"):
st.session_state.chat_history = []
st.session_state.user_input = ""
st.rerun()
st.markdown("Ask any clinical diagnostic question and get insights based on medical knowledge and patient cases.")
# Fixed input area at the top
with st.container():
st.markdown("<div class='input-container'>", unsafe_allow_html=True)
user_input = st.text_area("Ask a clinical question:", st.session_state.user_input, height=100, key="question_input")
col1, col2 = st.columns([1, 5])
with col1:
submit_button = st.button("Submit")
st.markdown("</div>", unsafe_allow_html=True)
# Create a container for chat history
chat_container = st.container()
# Process query
if submit_button and user_input:
if st.session_state.vectorstore is None:
st.error("Knowledge base not loaded. Please refresh the page and try again.")
else:
with st.spinner("Analyzing clinical data..."):
try:
# Add a small delay for UX
time.sleep(0.5)
# Run RAG
response = run_rag_chat(user_input, st.session_state.vectorstore)
response["retriever"] = st.session_state.vectorstore.as_retriever()
# Clear previous chat history and only keep the current response
st.session_state.chat_history = [(user_input, response)]
# Clear the input field
st.session_state.user_input = ""
# Rerun to update UI
st.rerun()
except Exception as e:
st.error(f"Error processing query: {str(e)}")
# Display chat history in the container
with chat_container:
for i, (query, response) in enumerate(st.session_state.chat_history):
st.markdown(f"<div class='chat-message chat-message-user'><b>πŸ§‘β€βš•οΈ You:</b> {query}</div>", unsafe_allow_html=True)
st.markdown(f"<div class='chat-message chat-message-assistant'><b>🩺 DiReCT:</b> {response['answer']}</div>", unsafe_allow_html=True)
with st.expander("View Sources"):
for doc in response["context"]:
st.markdown(f"<div class='source-box'>"
f"<b>Source:</b> {Path(doc.metadata['source']).stem}<br>"
f"<b>Type:</b> {doc.metadata['type']}<br>"
f"<b>Content:</b> {doc.page_content[:300]}...</div>",
unsafe_allow_html=True)
# Show evaluation metrics if available
try:
eval_scores = evaluate_rag_response(response, embeddings)
with st.expander("View Evaluation Metrics"):
col1, col2 = st.columns(2)
with col1:
st.metric("Hit Rate (Top-3)", f"{eval_scores['hit_rate']:.2f}")
with col2:
st.metric("Faithfulness", f"{eval_scores['faithfulness']:.2f}")
except Exception as e:
st.warning(f"Evaluation metrics unavailable: {str(e)}")
# About page
elif st.session_state.page == 'about':
st.markdown("<h1>About DiReCT</h1>", unsafe_allow_html=True)
st.markdown("""
### Project Overview
DiReCT (Diagnostic Reasoning for Clinical Text) is a Retrieval-Augmented Generation (RAG) system designed to assist medical professionals with diagnostic reasoning based on clinical notes and medical knowledge.
### Data Sources
This application uses the MIMIC-IV-Ext dataset, which contains de-identified clinical notes and medical records. The system processes:
- Diagnostic flowcharts
- Patient cases
- Clinical guidelines
### Technical Implementation
- **Embedding Model**: Bio_ClinicalBERT for domain-specific text understanding
- **Vector Database**: FAISS for efficient similarity search
- **LLM**: Llama-3.3-70B for generating medically accurate responses
- **Framework**: Built with LangChain and Streamlit
### Evaluation Metrics
The system evaluates responses using:
- **Hit Rate**: Measures how many relevant documents were retrieved
- **Faithfulness**: Measures how well the response aligns with the retrieved context
### Ethical Considerations
This system is designed as a clinical decision support tool and not as a replacement for professional medical judgment. All patient data used has been properly de-identified in compliance with healthcare privacy regulations.
""")
st.markdown("<br>", unsafe_allow_html=True)
st.markdown("### Developers")
st.markdown("This project was developed as part of an academic assignment on RAG systems for clinical applications.")
if __name__ == "__main__":
main()