Spaces:
Build error
Build error
File size: 16,077 Bytes
260df56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# -*- coding: utf-8 -*-
"""ITI110-Birds-CNN-ResNet-GPT-4o.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/16uUvA-YukBceEUQd8qBCISg9K3raRmAh
Based on the above pipeline, write a python code to create a Gradio UI which performs the following: 1. An input text box for user to input the path to the dataset 2. An output text bx to display the distribution of samples across species 3. Automatically perform 1.2 Audio Processing 4. Put 3 checkboxes for enabling or disabling Pitch Shifting, Time Stretching, and Background Noise 5. Use bullet buttons to allow user to select using MFCC, Spectrograms or Chroma for Feature Extraction 6. Use bullet buttons to allow user to select building either RestNet50 or CNN model 7. Let the user press a button to train and save the model 8. Let the user press a button to evaluate the model, output the results 9. Let the user press a button to perform hyperparameter tuning and save the model file 10. Let the user press a button to perform Learning Rate Reduction Callback and save the model file 11. Let the user press a button to evaluate the two fine-tuned models, output the results
Below is the Python code to create a Gradio UI that performs the tasks as specified. This code assumes you have already installed Gradio (pip install gradio) and other necessary libraries.
"""
import os
import numpy as np
import pandas as pd
import librosa
import soundfile as sf
from pydub import AudioSegment
import gradio as gr
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential, load_model, Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, Input
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.callbacks import ReduceLROnPlateau
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report, confusion_matrix
# Global variables
dataset_path = ''
species_folders = []
label_encoder = LabelEncoder()
X_train, X_test, y_train, y_test = None, None, None, None
history = None
model = None
def data_exploration(path):
global dataset_path, species_folders
dataset_path = path
species_folders = [f for f in os.listdir(dataset_path) if os.path.isdir(os.path.join(dataset_path, f))]
species_count = Counter()
for species in species_folders:
species_files = os.listdir(os.path.join(dataset_path, species))
species_count[species] = len(species_files)
species_df = pd.DataFrame(list(species_count.items()), columns=['Species', 'Count'])
species_df.to_csv('species_distribution.csv', index=False)
return species_df.to_string(index=False)
def audio_processing():
for species in species_folders:
species_folder = os.path.join(dataset_path, species)
for file_name in os.listdir(species_folder):
if file_name.endswith('.mp3'):
mp3_path = os.path.join(species_folder, file_name)
wav_path = os.path.join(species_folder, file_name.replace('.mp3', '.wav'))
convert_mp3_to_wav(mp3_path, wav_path)
os.remove(mp3_path)
for species in species_folders:
species_folder = os.path.join(dataset_path, species)
for file_name in os.listdir(species_folder):
if file_name.endswith('.wav'):
wav_path = os.path.join(species_folder, file_name)
preprocess_audio(wav_path, wav_path)
return "Audio processing completed."
def convert_mp3_to_wav(input_path, output_path):
audio = AudioSegment.from_mp3(input_path)
audio.export(output_path, format="wav")
def preprocess_audio(input_path, output_path, sample_rate=22050):
y, sr = librosa.load(input_path, sr=sample_rate)
y_trimmed, _ = librosa.effects.trim(y)
y_normalized = librosa.util.normalize(y_trimmed)
sf.write(output_path, y_normalized, sample_rate)
def data_augmentation(pitch_shifting, time_stretching, background_noise):
for species in species_folders:
species_folder = os.path.join(dataset_path, species)
if pitch_shifting:
apply_pitch_shift(species_folder)
if time_stretching:
apply_time_stretch(species_folder)
if background_noise:
apply_background_noise(species_folder)
return "Data augmentation completed."
def apply_pitch_shift(species_folder):
for file_name in os.listdir(species_folder):
if file_name.endswith('.wav'):
wav_path = os.path.join(species_folder, file_name)
y, sr = librosa.load(wav_path, sr=None)
y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=2)
shifted_path = wav_path.replace('.wav', '_pitch_shifted.wav')
sf.write(shifted_path, y_shifted, sr)
def apply_time_stretch(species_folder):
for file_name in os.listdir(species_folder):
if file_name.endswith('.wav'):
wav_path = os.path.join(species_folder, file_name)
y, sr = librosa.load(wav_path, sr=None)
y_stretched = librosa.effects.time_stretch(y, rate=1.2)
stretched_path = wav_path.replace('.wav', '_time_stretched.wav')
sf.write(stretched_path, y_stretched, sr)
def apply_background_noise(species_folder):
for file_name in os.listdir(species_folder):
if file_name.endswith('.wav'):
wav_path = os.path.join(species_folder, file_name)
y, sr = librosa.load(wav_path, sr=None)
noise = np.random.randn(len(y))
y_noisy = y + 0.005 * noise
noisy_path = wav_path.replace('.wav', '_noisy.wav')
sf.write(noisy_path, y_noisy, sr)
def feature_extraction(feature_type):
output_folder = f'path_to_output_{feature_type.lower()}'
if feature_type == 'MFCC':
extract_features = extract_mfcc
elif feature_type == 'Spectrogram':
extract_features = extract_spectrogram
elif feature_type == 'Chroma':
extract_features = extract_chroma_features
for species in species_folders:
species_folder = os.path.join(dataset_path, species)
species_output_folder = os.path.join(output_folder, species)
extract_features(species_folder, species_output_folder)
return f"{feature_type} features extracted and saved."
def extract_mfcc(species_folder, output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for file_name in os.listdir(species_folder):
if file_name.endswith('.wav'):
wav_path = os.path.join(species_folder, file_name)
y, sr = librosa.load(wav_path, sr=None)
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
feature_path = os.path.join(output_folder, file_name.replace('.wav', '.npy'))
np.save(feature_path, mfccs)
def extract_spectrogram(species_folder, output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for file_name in os.listdir(species_folder):
if file_name.endswith('.wav'):
wav_path = os.path.join(species_folder, file_name)
y, sr = librosa.load(wav_path, sr=None)
S = librosa.feature.melspectrogram(y=y, sr=sr)
S_DB = librosa.power_to_db(S, ref=np.max)
feature_path = os.path.join(output_folder, file_name.replace('.wav', '.npy'))
np.save(feature_path, S_DB)
def extract_chroma_features(species_folder, output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for file_name in os.listdir(species_folder):
if file_name.endswith('.wav'):
wav_path = os.path.join(species_folder, file_name)
y, sr = librosa.load(wav_path, sr=None)
chroma = librosa.feature.chroma_stft(y=y, sr=sr)
feature_path = os.path.join(output_folder, file_name.replace('.wav', '_chroma.npy'))
np.save(feature_path, chroma)
def load_features_and_labels(feature_folder):
X = []
y = []
species_list = os.listdir(feature_folder)
for species in species_list:
species_folder = os.path.join(feature_folder, species)
for file_name in os.listdir(species_folder):
if file_name.endswith('.npy'):
feature_path = os.path.join(species_folder, file_name)
features = np.load(feature_path)
X.append(features)
y.append(species)
return np.array(X), np.array(y)
def build_model(model_type, feature_type):
global X_train, X_test, y_train, y_test, label_encoder, model
feature_folder = f'path_to_output_{feature_type.lower()}'
X, y = load_features_and_labels(feature_folder)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
label_encoder = LabelEncoder()
y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)
y_train_categorical = to_categorical(y_train_encoded)
y_test_categorical = to_categorical(y_test_encoded)
np.save('classes.npy', label_encoder.classes_)
X_train_reshaped = np.stack([np.repeat(x[..., np.newaxis], 3, axis=-1) for x in X_train])
X_test_reshaped = np.stack([np.repeat(x[..., np.newaxis], 3, axis=-1) for x in X_test])
if model_type == 'ResNet50':
input_tensor = Input(shape=(X_train.shape[1], X_train.shape[2], 3))
base_model = ResNet50(include_top=False, weights='imagenet', input_tensor=input_tensor)
x = Flatten()(base_model.output)
x = Dense(128, activation='relu')(x)
x = Dropout(0.3)(x)
output_tensor = Dense(len(label_encoder.classes_), activation='softmax')(x)
model = Model(inputs=input_tensor, outputs=output_tensor)
else:
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(X_train.shape[1], X_train.shape[2], 3)),
MaxPooling2D((2, 2)),
Dropout(0.3),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Dropout(0.3),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.3),
Dense(len(label_encoder.classes_), activation='softmax')
])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
return "Model built."
def train_model():
global history
history = model.fit(X_train_reshaped, y_train_categorical, epochs=30, batch_size=32, validation_data=(X_test_reshaped, y_test_categorical))
model.save('bird_species_model.h5')
return "Model training completed and saved as 'bird_species_model.h5'."
def evaluate_model():
test_loss, test_accuracy = model.evaluate(X_test_reshaped, y_test_categorical)
y_pred = model.predict(X_test_reshaped)
y_pred_classes = np.argmax(y_pred, axis=1)
y_true_classes = np.argmax(y_test_categorical, axis=1)
report = classification_report(y_true_classes, y_pred_classes, target_names=label_encoder.classes_)
conf_matrix = confusion_matrix(y_true_classes, y_pred_classes)
plt.figure(figsize=(12, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show()
return f"Test Loss: {test_loss}\nTest Accuracy: {test_accuracy}\n\nClassification Report:\n{report}"
def hyperparameter_tuning():
global history
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001)
history = model.fit(X_train_reshaped, y_train_categorical, epochs=50, batch_size=32, validation_data=(X_test_reshaped, y_test_categorical), callbacks=[reduce_lr])
model.save('bird_species_model_fine_tuned_v1.h5')
return "Model hyperparameter tuning completed and saved as 'bird_species_model_fine_tuned_v1.h5'."
def learning_rate_reduction():
global history
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001)
history = model.fit(X_train_reshaped, y_train_categorical, epochs=50, batch_size=32, validation_data=(X_test_reshaped, y_test_categorical), callbacks=[reduce_lr])
model.save('bird_species_model_fine_tuned_v2.h5')
return "Model learning rate reduction completed and saved as 'bird_species_model_fine_tuned_v2.h5'."
def evaluate_fine_tuned_models():
model_v1 = load_model('bird_species_model_fine_tuned_v1.h5')
model_v2 = load_model('bird_species_model_fine_tuned_v2.h5')
test_loss_v1, test_accuracy_v1 = model_v1.evaluate(X_test_reshaped, y_test_categorical)
y_pred_v1 = model_v1.predict(X_test_reshaped)
y_pred_classes_v1 = np.argmax(y_pred_v1, axis=1)
y_true_classes_v1 = np.argmax(y_test_categorical, axis=1)
report_v1 = classification_report(y_true_classes_v1, y_pred_classes_v1, target_names=label_encoder.classes_)
test_loss_v2, test_accuracy_v2 = model_v2.evaluate(X_test_reshaped, y_test_categorical)
y_pred_v2 = model_v2.predict(X_test_reshaped)
y_pred_classes_v2 = np.argmax(y_pred_v2, axis=1)
y_true_classes_v2 = np.argmax(y_test_categorical, axis=1)
report_v2 = classification_report(y_true_classes_v2, y_pred_classes_v2, target_names=label_encoder.classes_)
return f"Fine-Tuned Model V1:\nTest Loss: {test_loss_v1}\nTest Accuracy: {test_accuracy_v1}\n\nClassification Report:\n{report_v1}\n\n" \
f"Fine-Tuned Model V2:\nTest Loss: {test_loss_v2}\nTest Accuracy: {test_accuracy_v2}\n\nClassification Report:\n{report_v2}"
# Gradio UI
with gr.Blocks() as demo:
with gr.Row():
dataset_path_input = gr.Textbox(label="Dataset Path")
data_exploration_output = gr.Textbox(label="Data Exploration Output")
with gr.Row():
audio_processing_button = gr.Button("Perform Audio Processing")
with gr.Row():
pitch_shifting_checkbox = gr.Checkbox(label="Enable Pitch Shifting")
time_stretching_checkbox = gr.Checkbox(label="Enable Time Stretching")
background_noise_checkbox = gr.Checkbox(label="Enable Background Noise")
data_augmentation_button = gr.Button("Perform Data Augmentation")
with gr.Row():
feature_extraction_radio = gr.Radio(["MFCC", "Spectrogram", "Chroma"], label="Feature Extraction")
feature_extraction_button = gr.Button("Perform Feature Extraction")
with gr.Row():
model_type_radio = gr.Radio(["ResNet50", "CNN"], label="Model Type")
build_model_button = gr.Button("Build Model")
with gr.Row():
train_model_button = gr.Button("Train and Save Model")
evaluate_model_button = gr.Button("Evaluate Model")
with gr.Row():
hyperparameter_tuning_button = gr.Button("Hyperparameter Tuning")
learning_rate_reduction_button = gr.Button("Learning Rate Reduction")
with gr.Row():
evaluate_fine_tuned_models_button = gr.Button("Evaluate Fine-Tuned Models")
dataset_path_input.change(data_exploration, inputs=dataset_path_input, outputs=data_exploration_output)
audio_processing_button.click(audio_processing, outputs=None)
data_augmentation_button.click(data_augmentation, inputs=[pitch_shifting_checkbox, time_stretching_checkbox, background_noise_checkbox], outputs=None)
feature_extraction_button.click(feature_extraction, inputs=feature_extraction_radio, outputs=None)
build_model_button.click(build_model, inputs=[model_type_radio, feature_extraction_radio], outputs=None)
train_model_button.click(train_model, outputs=None)
evaluate_model_button.click(evaluate_model, outputs=None)
hyperparameter_tuning_button.click(hyperparameter_tuning, outputs=None)
learning_rate_reduction_button.click(learning_rate_reduction, outputs=None)
evaluate_fine_tuned_models_button.click(evaluate_fine_tuned_models, outputs=None)
demo.launch()
|