MotionLCM / demo.py
wxDai's picture
[Init]
eb339cb
raw
history blame contribute delete
7.6 kB
import os
import pickle
import sys
import datetime
import logging
import os.path as osp
from omegaconf import OmegaConf
import torch
from mld.config import parse_args
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.models.modeltype.vae import VAE
from mld.utils.utils import set_seed, move_batch_to_device
from mld.data.humanml.utils.plot_script import plot_3d_motion
from mld.utils.temos_utils import remove_padding
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def load_example_hint_input(text_path: str) -> tuple:
with open(text_path, "r") as f:
lines = f.readlines()
n_frames, control_type_ids, control_hint_ids = [], [], []
for line in lines:
s = line.strip()
n_frame, control_type_id, control_hint_id = s.split(' ')
n_frames.append(int(n_frame))
control_type_ids.append(int(control_type_id))
control_hint_ids.append(int(control_hint_id))
return n_frames, control_type_ids, control_hint_ids
def load_example_input(text_path: str) -> tuple:
with open(text_path, "r") as f:
lines = f.readlines()
texts, lens = [], []
for line in lines:
s = line.strip()
s_l = s.split(" ")[0]
s_t = s[(len(s_l) + 1):]
lens.append(int(s_l))
texts.append(s_t)
return texts, lens
def main():
cfg = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
set_seed(cfg.SEED_VALUE)
name_time_str = osp.join(cfg.NAME, "demo_" + datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
cfg.output_dir = osp.join(cfg.TEST_FOLDER, name_time_str)
vis_dir = osp.join(cfg.output_dir, 'samples')
os.makedirs(cfg.output_dir, exist_ok=False)
os.makedirs(vis_dir, exist_ok=False)
steam_handler = logging.StreamHandler(sys.stdout)
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[steam_handler, file_handler])
logger = logging.getLogger(__name__)
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))
state_dict = torch.load(cfg.TEST.CHECKPOINTS, map_location="cpu")["state_dict"]
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))
# Step 1: Check if the checkpoint is VAE-based.
is_vae = False
vae_key = 'vae.skel_embedding.weight'
if vae_key in state_dict:
is_vae = True
logger.info(f'Is VAE: {is_vae}')
# Step 2: Check if the checkpoint is MLD-based.
is_mld = False
mld_key = 'denoiser.time_embedding.linear_1.weight'
if mld_key in state_dict:
is_mld = True
logger.info(f'Is MLD: {is_mld}')
# Step 3: Check if the checkpoint is LCM-based.
is_lcm = False
lcm_key = 'denoiser.time_embedding.cond_proj.weight' # unique key for CFG
if lcm_key in state_dict:
is_lcm = True
time_cond_proj_dim = state_dict[lcm_key].shape[1]
cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim
logger.info(f'Is LCM: {is_lcm}')
# Step 4: Check if the checkpoint is Controlnet-based.
cn_key = "controlnet.controlnet_cond_embedding.0.weight"
is_controlnet = True if cn_key in state_dict else False
cfg.model.is_controlnet = is_controlnet
logger.info(f'Is Controlnet: {is_controlnet}')
if is_mld or is_lcm or is_controlnet:
target_model_class = MLD
else:
target_model_class = VAE
if cfg.optimize:
assert cfg.model.get('noise_optimizer') is not None
cfg.model.noise_optimizer.params.optimize = True
logger.info('Optimization enabled. Set the batch size to 1.')
logger.info(f'Original batch size: {cfg.TEST.BATCH_SIZE}')
cfg.TEST.BATCH_SIZE = 1
dataset = get_dataset(cfg)
model = target_model_class(cfg, dataset)
model.to(device)
model.eval()
model.requires_grad_(False)
logger.info(model.load_state_dict(state_dict))
FPS = eval(f"cfg.DATASET.{cfg.DATASET.NAME.upper()}.FRAME_RATE")
if cfg.example is not None and not is_controlnet:
text, length = load_example_input(cfg.example)
for t, l in zip(text, length):
logger.info(f"{l}: {t}")
batch = {"length": length, "text": text}
for rep_i in range(cfg.replication):
with torch.no_grad():
joints = model(batch)[0]
num_samples = len(joints)
for i in range(num_samples):
res = dict()
pkl_path = osp.join(vis_dir, f"sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl")
res['joints'] = joints[i].detach().cpu().numpy()
res['text'] = text[i]
res['length'] = length[i]
res['hint'] = None
with open(pkl_path, 'wb') as f:
pickle.dump(res, f)
logger.info(f"Motions are generated here:\n{pkl_path}")
if not cfg.no_plot:
plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(), text[i], fps=FPS)
else:
test_dataloader = dataset.test_dataloader()
for rep_i in range(cfg.replication):
for batch_id, batch in enumerate(test_dataloader):
batch = move_batch_to_device(batch, device)
with torch.no_grad():
joints, joints_ref = model(batch)
num_samples = len(joints)
text = batch['text']
length = batch['length']
if 'hint' in batch:
hint, hint_mask = batch['hint'], batch['hint_mask']
hint = dataset.denorm_spatial(hint) * hint_mask
hint = remove_padding(hint, lengths=length)
else:
hint = None
for i in range(num_samples):
res = dict()
pkl_path = osp.join(vis_dir, f"batch_id_{batch_id}_sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl")
res['joints'] = joints[i].detach().cpu().numpy()
res['text'] = text[i]
res['length'] = length[i]
res['hint'] = hint[i].detach().cpu().numpy() if hint is not None else None
with open(pkl_path, 'wb') as f:
pickle.dump(res, f)
logger.info(f"Motions are generated here:\n{pkl_path}")
if not cfg.no_plot:
plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(),
text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None)
if rep_i == 0:
res['joints'] = joints_ref[i].detach().cpu().numpy()
with open(pkl_path.replace('.pkl', '_ref.pkl'), 'wb') as f:
pickle.dump(res, f)
logger.info(f"Motions are generated here:\n{pkl_path.replace('.pkl', '_ref.pkl')}")
if not cfg.no_plot:
plot_3d_motion(pkl_path.replace('.pkl', '_ref.mp4'), joints_ref[i].detach().cpu().numpy(),
text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None)
if __name__ == "__main__":
main()