Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,183 Bytes
33a65b5 89a1e10 72cd992 89a1e10 33a65b5 72cd992 ecb2ac2 29aeef1 ecb2ac2 642c115 33a65b5 72cd992 33a65b5 72cd992 33a65b5 72cd992 33a65b5 72cd992 89a1e10 72cd992 642c115 72cd992 33a65b5 72cd992 33a65b5 72cd992 33a65b5 642c115 33a65b5 642c115 33a65b5 642c115 72cd992 642c115 72cd992 642c115 72cd992 642c115 33a65b5 72cd992 642c115 72cd992 642c115 72cd992 642c115 33a65b5 ecb2ac2 89a1e10 72cd992 33a65b5 72cd992 642c115 72cd992 33a65b5 642c115 33a65b5 89a1e10 642c115 33a65b5 29aeef1 d71ed99 29aeef1 33a65b5 89a1e10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
from distillanydepth.modeling.archs.dam.dam import DepthAnything
from distillanydepth.utils.image_util import chw2hwc, colorize_depth_maps
from distillanydepth.midas.transforms import Resize, NormalizeImage, PrepareForNet
from torchvision.transforms import Compose
import cv2
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from gradio_imageslider import ImageSlider
import spaces
import tempfile
# Helper function to load model from Hugging Face
def load_model_by_name(arch_name, checkpoint_path, device):
model = None
if arch_name == 'depthanything':
# 使用 safetensors 加载模型权重
model_weights = load_file(checkpoint_path) # safetensors 加载方式
# 初始化模型
model = DepthAnything(checkpoint_path=None).to(device)
model.load_state_dict(model_weights) # 将加载的权重应用到模型
model = model.to(device) # 确保模型在正确的设备上
else:
raise NotImplementedError(f"Unknown architecture: {arch_name}")
return model
# Image processing function
def process_image(image, model, device):
if model is None:
return None, None, None, None
# Preprocess the image
image_np = np.array(image)[..., ::-1] / 255
transform = Compose([
Resize(756, 756, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet()
])
image_tensor = transform({'image': image_np})['image']
image_tensor = torch.from_numpy(image_tensor).unsqueeze(0).to(device)
with torch.no_grad():
pred_disp, _ = model(image_tensor)
torch.cuda.empty_cache()
# Convert depth map to numpy
pred_disp_np = pred_disp.cpu().detach().numpy()[0, 0, :, :]
# Normalize depth map
pred_disp_normalized = (pred_disp_np - pred_disp_np.min()) / (pred_disp_np.max() - pred_disp_np.min())
# Colorized depth map
cmap = "Spectral_r"
depth_colored = colorize_depth_maps(pred_disp_normalized[None, ..., None], 0, 1, cmap=cmap).squeeze()
depth_colored = (depth_colored * 255).astype(np.uint8)
depth_colored_hwc = chw2hwc(depth_colored)
# Gray depth map
depth_gray = (pred_disp_normalized * 255).astype(np.uint8)
depth_gray_hwc = np.stack([depth_gray] * 3, axis=-1) # Convert to 3-channel grayscale
# Save raw depth map as a temporary npy file
with tempfile.NamedTemporaryFile(delete=False, suffix=".npy") as temp_file:
np.save(temp_file.name, pred_disp_normalized)
depth_raw_path = temp_file.name
# Resize outputs to match original image size
h, w = image_np.shape[:2]
depth_colored_hwc = cv2.resize(depth_colored_hwc, (w, h), cv2.INTER_LINEAR)
depth_gray_hwc = cv2.resize(depth_gray_hwc, (w, h), cv2.INTER_LINEAR)
# Convert to PIL images
return image, Image.fromarray(depth_colored_hwc), Image.fromarray(depth_gray_hwc), depth_raw_path
# Gradio interface function with GPU support
@spaces.GPU
def gradio_interface(image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_kwargs = dict(
vitb=dict(
encoder='vitb',
features=128,
out_channels=[96, 192, 384, 768],
),
vitl=dict(
encoder="vitl",
features=256,
out_channels=[256, 512, 1024, 1024],
use_bn=False,
use_clstoken=False,
max_depth=150.0,
mode='disparity',
pretrain_type='dinov2',
del_mask_token=False
)
)
# Load model
model = DepthAnything(**model_kwargs['vitl']).to(device)
checkpoint_path = hf_hub_download(repo_id=f"xingyang1/Distill-Any-Depth", filename=f"large/model.safetensors", repo_type="model")
# 使用 safetensors 加载模型权重
model_weights = load_file(checkpoint_path) # safetensors 加载方式
model.load_state_dict(model_weights)
model = model.to(device) # 确保模型在正确的设备上
if model is None:
return None, None, None, None
# Process image and return output
image, depth_image, depth_gray, depth_raw = process_image(image, model, device)
return (image, depth_image), depth_gray, depth_raw
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Image(type="pil"), # Only image input, no mode selection
outputs = [ImageSlider(label="Depth slider", type="pil", slider_color="pink"), # Depth image out with a slider
gr.Image(type="pil", label="Gray Depth"),
gr.File(label="Raw Depth (NumPy File)")
],
title="Depth Estimation Demo",
description="Upload an image to see the depth estimation results. Our model is running on GPU for faster processing.",
examples=["1.jpg", "2.jpg", "4.png", "5.jpg", "6.jpg"],
cache_examples=True,)
# Launch the Gradio interface
iface.launch() |