yashoda74679 commited on
Commit
14fa8ce
·
verified ·
1 Parent(s): 2d0326d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -8
app.py CHANGED
@@ -1,15 +1,27 @@
 
1
  import torch
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
3
  from datasets import load_dataset
4
 
 
 
 
 
 
 
 
 
5
  # Load dataset
6
- print("Loading dataset...")
7
  ds = load_dataset("facebook/natural_reasoning")
 
8
 
9
  # Load tokenizer
10
- print("Loading tokenizer...")
11
  model_name = "deepseek-ai/DeepSeek-R1"
12
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 
13
 
14
  # Tokenization function
15
  def preprocess_function(examples):
@@ -17,14 +29,17 @@ def preprocess_function(examples):
17
  return tokenizer(input_texts, truncation=True, padding="max_length", max_length=512)
18
 
19
  # Tokenize dataset
20
- print("Tokenizing dataset...")
21
  tokenized_datasets = ds.map(preprocess_function, batched=True)
 
22
 
23
  # Load model
24
- print("Loading model...")
25
  model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
 
26
 
27
  # Training arguments
 
28
  training_args = TrainingArguments(
29
  output_dir="./results",
30
  evaluation_strategy="epoch",
@@ -35,10 +50,14 @@ training_args = TrainingArguments(
35
  weight_decay=0.01,
36
  logging_dir="./logs",
37
  logging_steps=10,
38
- push_to_hub=True # Upload trained model to Hugging Face Hub
 
 
39
  )
 
40
 
41
  # Trainer
 
42
  trainer = Trainer(
43
  model=model,
44
  args=training_args,
@@ -46,12 +65,14 @@ trainer = Trainer(
46
  eval_dataset=tokenized_datasets["test"],
47
  tokenizer=tokenizer
48
  )
 
49
 
50
  # Start training
51
- print("Starting training...")
52
  trainer.train()
 
53
 
54
  # Push trained model to Hugging Face Hub
55
- print("Pushing model to Hub...")
56
  trainer.push_to_hub()
57
- print("Training complete!")
 
1
+ import os
2
  import torch
3
+ import logging
4
  from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
5
  from datasets import load_dataset
6
 
7
+ # Set verbose logging
8
+ logging.basicConfig(level=logging.INFO)
9
+ logger = logging.getLogger(__name__)
10
+
11
+ # Set a writable cache directory
12
+ os.environ["HF_HOME"] = "/app/hf_cache"
13
+ os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
14
+
15
  # Load dataset
16
+ logger.info("Loading dataset...")
17
  ds = load_dataset("facebook/natural_reasoning")
18
+ logger.info(f"Dataset loaded successfully! Dataset info:\n{ds}")
19
 
20
  # Load tokenizer
21
+ logger.info("Loading tokenizer...")
22
  model_name = "deepseek-ai/DeepSeek-R1"
23
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
24
+ logger.info("Tokenizer loaded successfully!")
25
 
26
  # Tokenization function
27
  def preprocess_function(examples):
 
29
  return tokenizer(input_texts, truncation=True, padding="max_length", max_length=512)
30
 
31
  # Tokenize dataset
32
+ logger.info("Tokenizing dataset...")
33
  tokenized_datasets = ds.map(preprocess_function, batched=True)
34
+ logger.info("Dataset tokenized successfully!")
35
 
36
  # Load model
37
+ logger.info("Loading model...")
38
  model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
39
+ logger.info("Model loaded successfully!")
40
 
41
  # Training arguments
42
+ logger.info("Setting up training arguments...")
43
  training_args = TrainingArguments(
44
  output_dir="./results",
45
  evaluation_strategy="epoch",
 
50
  weight_decay=0.01,
51
  logging_dir="./logs",
52
  logging_steps=10,
53
+ push_to_hub=True, # Upload trained model to Hugging Face Hub
54
+ report_to="none", # Prevents sending logs to external services
55
+ logging_first_step=True
56
  )
57
+ logger.info("Training arguments set!")
58
 
59
  # Trainer
60
+ logger.info("Initializing Trainer...")
61
  trainer = Trainer(
62
  model=model,
63
  args=training_args,
 
65
  eval_dataset=tokenized_datasets["test"],
66
  tokenizer=tokenizer
67
  )
68
+ logger.info("Trainer initialized!")
69
 
70
  # Start training
71
+ logger.info("Starting training...")
72
  trainer.train()
73
+ logger.info("Training completed!")
74
 
75
  # Push trained model to Hugging Face Hub
76
+ logger.info("Pushing trained model to Hugging Face Hub...")
77
  trainer.push_to_hub()
78
+ logger.info("Model push completed! Training process finished successfully.")