Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,27 @@
|
|
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
from datasets import load_dataset
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Load dataset
|
6 |
-
|
7 |
ds = load_dataset("facebook/natural_reasoning")
|
|
|
8 |
|
9 |
# Load tokenizer
|
10 |
-
|
11 |
model_name = "deepseek-ai/DeepSeek-R1"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
13 |
|
14 |
# Tokenization function
|
15 |
def preprocess_function(examples):
|
@@ -17,14 +29,17 @@ def preprocess_function(examples):
|
|
17 |
return tokenizer(input_texts, truncation=True, padding="max_length", max_length=512)
|
18 |
|
19 |
# Tokenize dataset
|
20 |
-
|
21 |
tokenized_datasets = ds.map(preprocess_function, batched=True)
|
|
|
22 |
|
23 |
# Load model
|
24 |
-
|
25 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
|
|
26 |
|
27 |
# Training arguments
|
|
|
28 |
training_args = TrainingArguments(
|
29 |
output_dir="./results",
|
30 |
evaluation_strategy="epoch",
|
@@ -35,10 +50,14 @@ training_args = TrainingArguments(
|
|
35 |
weight_decay=0.01,
|
36 |
logging_dir="./logs",
|
37 |
logging_steps=10,
|
38 |
-
push_to_hub=True # Upload trained model to Hugging Face Hub
|
|
|
|
|
39 |
)
|
|
|
40 |
|
41 |
# Trainer
|
|
|
42 |
trainer = Trainer(
|
43 |
model=model,
|
44 |
args=training_args,
|
@@ -46,12 +65,14 @@ trainer = Trainer(
|
|
46 |
eval_dataset=tokenized_datasets["test"],
|
47 |
tokenizer=tokenizer
|
48 |
)
|
|
|
49 |
|
50 |
# Start training
|
51 |
-
|
52 |
trainer.train()
|
|
|
53 |
|
54 |
# Push trained model to Hugging Face Hub
|
55 |
-
|
56 |
trainer.push_to_hub()
|
57 |
-
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
import logging
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
# Set verbose logging
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
# Set a writable cache directory
|
12 |
+
os.environ["HF_HOME"] = "/app/hf_cache"
|
13 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
|
14 |
+
|
15 |
# Load dataset
|
16 |
+
logger.info("Loading dataset...")
|
17 |
ds = load_dataset("facebook/natural_reasoning")
|
18 |
+
logger.info(f"Dataset loaded successfully! Dataset info:\n{ds}")
|
19 |
|
20 |
# Load tokenizer
|
21 |
+
logger.info("Loading tokenizer...")
|
22 |
model_name = "deepseek-ai/DeepSeek-R1"
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
24 |
+
logger.info("Tokenizer loaded successfully!")
|
25 |
|
26 |
# Tokenization function
|
27 |
def preprocess_function(examples):
|
|
|
29 |
return tokenizer(input_texts, truncation=True, padding="max_length", max_length=512)
|
30 |
|
31 |
# Tokenize dataset
|
32 |
+
logger.info("Tokenizing dataset...")
|
33 |
tokenized_datasets = ds.map(preprocess_function, batched=True)
|
34 |
+
logger.info("Dataset tokenized successfully!")
|
35 |
|
36 |
# Load model
|
37 |
+
logger.info("Loading model...")
|
38 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
39 |
+
logger.info("Model loaded successfully!")
|
40 |
|
41 |
# Training arguments
|
42 |
+
logger.info("Setting up training arguments...")
|
43 |
training_args = TrainingArguments(
|
44 |
output_dir="./results",
|
45 |
evaluation_strategy="epoch",
|
|
|
50 |
weight_decay=0.01,
|
51 |
logging_dir="./logs",
|
52 |
logging_steps=10,
|
53 |
+
push_to_hub=True, # Upload trained model to Hugging Face Hub
|
54 |
+
report_to="none", # Prevents sending logs to external services
|
55 |
+
logging_first_step=True
|
56 |
)
|
57 |
+
logger.info("Training arguments set!")
|
58 |
|
59 |
# Trainer
|
60 |
+
logger.info("Initializing Trainer...")
|
61 |
trainer = Trainer(
|
62 |
model=model,
|
63 |
args=training_args,
|
|
|
65 |
eval_dataset=tokenized_datasets["test"],
|
66 |
tokenizer=tokenizer
|
67 |
)
|
68 |
+
logger.info("Trainer initialized!")
|
69 |
|
70 |
# Start training
|
71 |
+
logger.info("Starting training...")
|
72 |
trainer.train()
|
73 |
+
logger.info("Training completed!")
|
74 |
|
75 |
# Push trained model to Hugging Face Hub
|
76 |
+
logger.info("Pushing trained model to Hugging Face Hub...")
|
77 |
trainer.push_to_hub()
|
78 |
+
logger.info("Model push completed! Training process finished successfully.")
|