yashoda74679 commited on
Commit
38a88ab
·
verified ·
1 Parent(s): e32e614

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -20
app.py CHANGED
@@ -1,44 +1,57 @@
1
- from datasets import load_dataset
2
- from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer, AutoTokenizer
3
  import torch
 
 
4
 
5
- # Load Dataset
6
- dataset = load_dataset("yelp_review_full") # Example dataset
 
7
 
8
- # Load Pretrained Model & Tokenizer
9
- model_name = "bert-base-uncased"
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
- model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5)
12
 
13
- # Tokenize Dataset
14
  def preprocess_function(examples):
15
- return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
 
 
 
 
 
16
 
17
- encoded_dataset = dataset.map(preprocess_function, batched=True)
 
 
18
 
19
- # Training Arguments
20
  training_args = TrainingArguments(
21
  output_dir="./results",
22
  evaluation_strategy="epoch",
23
  save_strategy="epoch",
24
- per_device_train_batch_size=8,
25
- per_device_eval_batch_size=8,
26
  num_train_epochs=3,
27
  weight_decay=0.01,
28
- push_to_hub=True # Push trained model back to Hugging Face
 
 
29
  )
30
 
31
- # Define Trainer
32
  trainer = Trainer(
33
  model=model,
34
  args=training_args,
35
- train_dataset=encoded_dataset["train"],
36
- eval_dataset=encoded_dataset["test"],
37
  tokenizer=tokenizer
38
  )
39
 
40
- # Train the Model
 
41
  trainer.train()
42
 
43
- # Save & Push to Hub
 
44
  trainer.push_to_hub()
 
 
 
 
1
  import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
3
+ from datasets import load_dataset
4
 
5
+ # Load dataset
6
+ print("Loading dataset...")
7
+ ds = load_dataset("facebook/natural_reasoning")
8
 
9
+ # Load tokenizer
10
+ print("Loading tokenizer...")
11
+ model_name = "deepseek-ai/DeepSeek-R1"
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
 
14
+ # Tokenization function
15
  def preprocess_function(examples):
16
+ input_texts = [f"Q: {q} A: {a}" for q, a in zip(examples["question"], examples["reference_answer"])]
17
+ return tokenizer(input_texts, truncation=True, padding="max_length", max_length=512)
18
+
19
+ # Tokenize dataset
20
+ print("Tokenizing dataset...")
21
+ tokenized_datasets = ds.map(preprocess_function, batched=True)
22
 
23
+ # Load model
24
+ print("Loading model...")
25
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
26
 
27
+ # Training arguments
28
  training_args = TrainingArguments(
29
  output_dir="./results",
30
  evaluation_strategy="epoch",
31
  save_strategy="epoch",
32
+ per_device_train_batch_size=4, # Adjust based on available RAM
33
+ per_device_eval_batch_size=4,
34
  num_train_epochs=3,
35
  weight_decay=0.01,
36
+ logging_dir="./logs",
37
+ logging_steps=10,
38
+ push_to_hub=True # Upload trained model to Hugging Face Hub
39
  )
40
 
41
+ # Trainer
42
  trainer = Trainer(
43
  model=model,
44
  args=training_args,
45
+ train_dataset=tokenized_datasets["train"],
46
+ eval_dataset=tokenized_datasets["test"],
47
  tokenizer=tokenizer
48
  )
49
 
50
+ # Start training
51
+ print("Starting training...")
52
  trainer.train()
53
 
54
+ # Push trained model to Hugging Face Hub
55
+ print("Pushing model to Hub...")
56
  trainer.push_to_hub()
57
+ print("Training complete!")