Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,57 @@
|
|
1 |
-
from datasets import load_dataset
|
2 |
-
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
-
# Load
|
6 |
-
|
|
|
7 |
|
8 |
-
# Load
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
#
|
14 |
def preprocess_function(examples):
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
# Training
|
20 |
training_args = TrainingArguments(
|
21 |
output_dir="./results",
|
22 |
evaluation_strategy="epoch",
|
23 |
save_strategy="epoch",
|
24 |
-
per_device_train_batch_size=
|
25 |
-
per_device_eval_batch_size=
|
26 |
num_train_epochs=3,
|
27 |
weight_decay=0.01,
|
28 |
-
|
|
|
|
|
29 |
)
|
30 |
|
31 |
-
#
|
32 |
trainer = Trainer(
|
33 |
model=model,
|
34 |
args=training_args,
|
35 |
-
train_dataset=
|
36 |
-
eval_dataset=
|
37 |
tokenizer=tokenizer
|
38 |
)
|
39 |
|
40 |
-
#
|
|
|
41 |
trainer.train()
|
42 |
|
43 |
-
#
|
|
|
44 |
trainer.push_to_hub()
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
+
from datasets import load_dataset
|
4 |
|
5 |
+
# Load dataset
|
6 |
+
print("Loading dataset...")
|
7 |
+
ds = load_dataset("facebook/natural_reasoning")
|
8 |
|
9 |
+
# Load tokenizer
|
10 |
+
print("Loading tokenizer...")
|
11 |
+
model_name = "deepseek-ai/DeepSeek-R1"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
|
14 |
+
# Tokenization function
|
15 |
def preprocess_function(examples):
|
16 |
+
input_texts = [f"Q: {q} A: {a}" for q, a in zip(examples["question"], examples["reference_answer"])]
|
17 |
+
return tokenizer(input_texts, truncation=True, padding="max_length", max_length=512)
|
18 |
+
|
19 |
+
# Tokenize dataset
|
20 |
+
print("Tokenizing dataset...")
|
21 |
+
tokenized_datasets = ds.map(preprocess_function, batched=True)
|
22 |
|
23 |
+
# Load model
|
24 |
+
print("Loading model...")
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
26 |
|
27 |
+
# Training arguments
|
28 |
training_args = TrainingArguments(
|
29 |
output_dir="./results",
|
30 |
evaluation_strategy="epoch",
|
31 |
save_strategy="epoch",
|
32 |
+
per_device_train_batch_size=4, # Adjust based on available RAM
|
33 |
+
per_device_eval_batch_size=4,
|
34 |
num_train_epochs=3,
|
35 |
weight_decay=0.01,
|
36 |
+
logging_dir="./logs",
|
37 |
+
logging_steps=10,
|
38 |
+
push_to_hub=True # Upload trained model to Hugging Face Hub
|
39 |
)
|
40 |
|
41 |
+
# Trainer
|
42 |
trainer = Trainer(
|
43 |
model=model,
|
44 |
args=training_args,
|
45 |
+
train_dataset=tokenized_datasets["train"],
|
46 |
+
eval_dataset=tokenized_datasets["test"],
|
47 |
tokenizer=tokenizer
|
48 |
)
|
49 |
|
50 |
+
# Start training
|
51 |
+
print("Starting training...")
|
52 |
trainer.train()
|
53 |
|
54 |
+
# Push trained model to Hugging Face Hub
|
55 |
+
print("Pushing model to Hub...")
|
56 |
trainer.push_to_hub()
|
57 |
+
print("Training complete!")
|