Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load Dataset
|
6 |
+
dataset = load_dataset("yelp_review_full") # Example dataset
|
7 |
+
|
8 |
+
# Load Pretrained Model & Tokenizer
|
9 |
+
model_name = "bert-base-uncased"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5)
|
12 |
+
|
13 |
+
# Tokenize Dataset
|
14 |
+
def preprocess_function(examples):
|
15 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
|
16 |
+
|
17 |
+
encoded_dataset = dataset.map(preprocess_function, batched=True)
|
18 |
+
|
19 |
+
# Training Arguments
|
20 |
+
training_args = TrainingArguments(
|
21 |
+
output_dir="./results",
|
22 |
+
evaluation_strategy="epoch",
|
23 |
+
save_strategy="epoch",
|
24 |
+
per_device_train_batch_size=8,
|
25 |
+
per_device_eval_batch_size=8,
|
26 |
+
num_train_epochs=3,
|
27 |
+
weight_decay=0.01,
|
28 |
+
push_to_hub=True # Push trained model back to Hugging Face
|
29 |
+
)
|
30 |
+
|
31 |
+
# Define Trainer
|
32 |
+
trainer = Trainer(
|
33 |
+
model=model,
|
34 |
+
args=training_args,
|
35 |
+
train_dataset=encoded_dataset["train"],
|
36 |
+
eval_dataset=encoded_dataset["test"],
|
37 |
+
tokenizer=tokenizer
|
38 |
+
)
|
39 |
+
|
40 |
+
# Train the Model
|
41 |
+
trainer.train()
|
42 |
+
|
43 |
+
# Save & Push to Hub
|
44 |
+
trainer.push_to_hub()
|