yvesJR-237's picture
Update app.py
bf2e6d7 verified
raw
history blame contribute delete
12 kB
import streamlit as st
import tensorflow as tf
from tensorflow.keras.layers import InputLayer
from PIL import Image
import numpy as np
# from .modules.tools import Analysing_image, text_to_speech
from gtts import gTTS
from transformers import BioGptTokenizer, AutoModelForCausalLM, pipeline, TFAutoModel
from deep_translator import GoogleTranslator, MyMemoryTranslator
import tempfile
import os
# Set the page configuration
st.set_page_config(page_title="Medical Image Classifier & Chatbot", layout="wide")
st.title("Medical Image Classifier & Chatbot")
st.sidebar.header("Medical Analysis")
keys={'0':'Cyst', '1':'Normal', '2':'Stone', '3':'Tumor'}
def translate_text(text, source='auto', target='es'):
translators = [GoogleTranslator, MyMemoryTranslator]
for translator in translators:
try:
translation = translator(source=source, target=target).translate(text)
print(f"{translator.__name__}: {translation}")
return translation
except Exception as e:
print(f"{translator.__name__} failed: {e}")
print("All translators failed. No translation found.")
return None
def Analysing_image(st, model, image_file):
try:
# Open and display the image
image = Image.open(image_file)
st.image(image, caption="Uploaded Image", use_container_width=True)
# Preprocess the image:
# Ensure it is resized to the input dimensions your model expects (150x150 in this example)
img_resized = image.resize((150, 150))
img_array = np.array(img_resized).astype('float32') / 255.0
# If the image is not 3 channels (some images might be grayscale), repeat channels if necessary
if img_array.ndim == 2:
img_array = np.stack((img_array,)*3, axis=-1)
elif img_array.shape[2] == 1:
img_array = np.concatenate([img_array]*3, axis=-1)
# Add batch dimension
img_batch = np.expand_dims(img_array, axis=0)
# Run prediction
predictions = model.predict(img_batch)
st.write("Prediction probabilities:", predictions)
# Assuming a multi-class classification where the class with the highest probability is selected:
predicted_class = np.argmax(predictions, axis=1)
st.write("Prediction :", keys[str(predicted_class[0])])
return keys[str(predicted_class[0])]
except:
return None
# Function to convert text to speech
def text_to_speech(text):
tts = gTTS(text)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_file.name)
return temp_file.name
@st.cache_resource # Cache the model to avoid reloading on every interaction
def load_generator():
# Use a medical-specific model like BioGPT or a general-purpose model like GPT-2
tokenizer = BioGptTokenizer.from_pretrained("microsoft/BioGPT")
model = AutoModelForCausalLM.from_pretrained("microsoft/BioGPT")
return model, tokenizer
@st.cache_resource # Cache the model to avoid reloading on every interaction
def load_summarizer():
# Use a summarization model like "facebook/bart-large-cnn"
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
return summarizer
# generator, tokenizer = load_generator()
generator = pipeline("text2text-generation", model="EleutherAI/gpt-neo-125M")
summarizer = load_summarizer()
translator = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de")
image_file = st.sidebar.file_uploader("Upload an Image (.jpg, .jpeg, .png)", type=["jpg", "jpeg", "png"])
# Create tabs for each functionality
tab1, tab2, tab3, tab4 = st.tabs(["Classification", "Chatbot", "Translation & Summary", "Audio"])
predict_class = None
Summary = None
with tab1:
# st.write("Upload your finalized model and an image to classify.")
# Sidebar for uploading files
model_file = st.sidebar.file_uploader("Upload your Keras model (.h5 file)", type=["h5"])
# Check if a model has been uploaded
if model_file is not None:
# Save the uploaded model file to disk
with open("uploaded_model.h5", "wb") as f:
f.write(model_file.getbuffer())
st.sidebar.success("Model uploaded successfully!")
# Attempt to load the model
try:
model = tf.keras.models.load_model("uploaded_model.h5")
st.sidebar.info("Model loaded successfully!")
except Exception as e:
st.sidebar.error("Error loading model: " + str(e))
st.stop()
# Check if an image has been uploaded
if image_file is not None:
predict_class = Analysing_image(st, model, image_file)
else:
st.info("Please upload an image to classify.")
else:
st.info("Using Pretrained model")
model = tf.keras.models.load_model("./models/medical_classifier/medical_classifier.h5")
# model = TFAutoModel.from_pretrained('./models/medical_classifier')
# config = model.config
# if 'batch_shape' in config:
# config['input_shape'] = config.pop('batch_shape')[1:] # Remove batch size
# # Create the input layer with the corrected configuration
# input_layer = InputLayer(**model.config)
# # Rebuild the model (if necessary)
# model.build(input_shape=model.config['input_shape'])
if image_file is not None:
predict_class = Analysing_image(st, model, image_file)
else:
st.info("Please upload an image to classify.")
# -----------------------------------------------------------------------------------------------
with tab2:
if predict_class is not None:
# # Create a prompt for the model
if predict_class == 'Normal':
prompt = f"What does it mean when the doctor say my IRM is Normal ?"
else:
if predict_class == "Cyst":
prompt = f"What is brain cystic lesion ?"
else:
prompt = f"What is brain {predict_class} ?"
# # Generate text using the Hugging Face model
# with st.spinner("Generating description..."):
# inputs = tokenizer(prompt, return_tensors="pt")
# # Générer du texte
# output = generator.generate(
# inputs["input_ids"],
# max_length=300, # Longueur maximale du texte généré
# num_return_sequences=1, # Nombre de séquences à générer
# no_repeat_ngram_size=2, # Éviter la répétition de phrases
# top_k=50, # Contrôle la diversité du texte
# top_p=0.95, # Contrôle la qualité du texte
# temperature=0.7, # Contrôle la créativité du texte
# )
# # Décoder et afficher le texte généré
# # generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
# outputs = tokenizer.decode(output[0], skip_special_tokens=True)
# # output = generator(prompt, max_length=200, num_return_sequences=1)
# # st.session_state.chat_response = output[0]['generated_text']
# # st.session_state.chat_response = outputs
# # Decode the generated text, *excluding* the input prompt
# generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
# # Find the length of the original prompt
# prompt_length = len(tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True))
# # Extract the generated part of the text
# generated_response = generated_text[prompt_length:]
# st.session_state.chat_response = generated_response
# medical_term = "myocardial infarction"
# medical_term = prompt
# description = generator(f"Explain the medical term: {medical_term}")
user_input = st.text_area("Enter your prompt:", prompt)
# Slider for controlling the length of the generated text
max_length = st.slider("Max length of generated text", 50, 500, 100)
# Button to generate text
if st.button("Generate Text"):
with st.spinner("Generating text..."):
# Generate text using the model
output = generator(user_input, max_length=max_length, num_return_sequences=1)
generated_text = output[0]['generated_text']
# Display the generated text
st.subheader("Description:")
st.write(generated_text)
# st.session_state.chat_response = outputs
st.session_state.chat_response = generated_text
# st.session_state.chat_response = outputs
# st.session_state.chat_response = generated_text
# Display the generated description
# st.subheader("Generated Description:")
# st.write(prompt, '--')
# st.write(st.session_state.chat_response)
# Add translation and summary functionality
with tab3:
st.header("Translation to German & Summary")
if 'chat_response' in st.session_state and st.session_state.chat_response:
medical_terms = st.session_state.chat_response
# Translate to German
# translator = GoogleTranslator(source='en', target='de')
# german_translation = translator.translate(medical_terms)
# Translate the text
# translation = translate_text(medical_terms, target='de')
translation = translator(medical_terms)
outputs = 'Unable to translate, please Retry ...'
if translation:
outputs = translation[0]['translation_text']
# st.subheader("Final Translation:")
# st.write(translation)
else:
st.info("Unable to translate the text. Please try to refresh")
if st.button('Refresh'):
outputs = translator(prompt, target='de')
outputs = outputs[0]['translation_text']
# Create summary (simple example - in practice you might want to use a more sophisticated summarization method)
# summary = " ".join(st.session_state.chat_response.split()[:30]) + "..."
st.write("German Translation:", outputs)
if st.button("Generate Summary"):
if outputs != 'Unable to translate, please Retry ...':
# Create a prompt for the model
# prompt = f"{predict_class} is a medical condition that refers to "
prompt = outputs
# Generate a summary using the Hugging Face model
with st.spinner("Generating summary..."):
# Summarize the prompt (you can adjust max_length and min_length)
summary = summarizer(prompt, max_length=85, min_length=60, do_sample=False)
# Display the generated summary
st.subheader("Generated Summary:")
st.write(summary[0]['summary_text'])
else:
st.warning("Please enter a medical term.")
else:
st.info("No chatbot response available for translation and summary.")
# Add audio functionality
with tab4:
st.header("Audio Output")
if 'chat_response' in st.session_state and st.session_state.chat_response:
# Convert chatbot response to audio
audio_file = text_to_speech(st.session_state.chat_response)
st.audio(audio_file)
# Clean up temp file
with open(audio_file, "rb") as file:
btn = st.download_button(
label="Download audio",
data=file,
file_name="chat_response.mp3",
mime="audio/mpeg"
)
os.unlink(audio_file)
else:
st.info("No chatbot response available for audio conversion.")
print("Streamlit app updated with translation, summarization, and audio features.")