Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +35 -0
- emotion_model.h5 +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Load your trained model
|
8 |
+
model = tf.keras.models.load_model("emotion_model.h5") # Ensure this model is in the repo
|
9 |
+
|
10 |
+
# Define emotion labels
|
11 |
+
emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happiness', 'Neutral', 'Sadness', 'Surprise', 'Contempt']
|
12 |
+
|
13 |
+
# Function for inference
|
14 |
+
def predict_emotion(img):
|
15 |
+
img = img.convert("RGB").resize((48, 48)) # Ensure correct size
|
16 |
+
img_array = image.img_to_array(img)
|
17 |
+
img_array = np.expand_dims(img_array, axis=0) / 255.0 # Normalize
|
18 |
+
|
19 |
+
predictions = model.predict(img_array)
|
20 |
+
predicted_class = np.argmax(predictions)
|
21 |
+
confidence = np.max(predictions)
|
22 |
+
|
23 |
+
return f"Emotion: {emotion_labels[predicted_class]} (Confidence: {confidence:.2f})"
|
24 |
+
|
25 |
+
# Gradio UI
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=predict_emotion,
|
28 |
+
inputs=gr.Image(type="pil"),
|
29 |
+
outputs="text",
|
30 |
+
title="Emotion Detection",
|
31 |
+
description="Upload an image, and the AI will predict the emotion.",
|
32 |
+
)
|
33 |
+
|
34 |
+
# Run app
|
35 |
+
iface.launch()
|
emotion_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39922632d095a301b9c0122dcf1846eba928c028865cabfe5f2386c36c2ccfb3
|
3 |
+
size 289692192
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
gradio
|
3 |
+
numpy
|
4 |
+
pillow
|