yanshen.1000 commited on
Commit
48fdca1
·
1 Parent(s): 34f5049

Initial commit

Browse files
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TCMoEForCausalLM"
4
+ ],
5
+ "bos_token_id": 0,
6
+ "eos_token_id": 0,
7
+ "hidden_size": 1024,
8
+ "initializer_range": 0.006,
9
+ "intermediate_size": 2816,
10
+ "max_position_embeddings": 2048,
11
+ "model_type": "tcmoe",
12
+ "moe_topk": 2,
13
+ "norm_eps": 1e-05,
14
+ "num_attention_heads": 16,
15
+ "num_experts": 8,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 2,
18
+ "num_null_experts": 2,
19
+ "rope_pct": 1.0,
20
+ "rope_theta": 10000.0,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "use_cache": true,
24
+ "vocab_size": 50432
25
+ }
configuration_tcmoe.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The HuggingFace Inc. team. All rights reserved.
2
+ # Copyright (c) Shen Yan. All rights reserved.
3
+ # This code is built upon Huggingface's transformers repository.
4
+
5
+ from transformers import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+
12
+ class TCMoEConfig(PretrainedConfig):
13
+ r"""
14
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
15
+ documentation from [`PretrainedConfig`] for more information.
16
+ Args:
17
+ vocab_size (`int`, *optional*, defaults to 50_304):
18
+ Vocabulary size of the StableLM model. Defines the number of different tokens that
19
+ can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`].
20
+ intermediate_size (`int`, *optional*, defaults to 6912):
21
+ Dimension of the MLP representations.
22
+ hidden_size (`int`, *optional*, defaults to 2560):
23
+ Dimension of the decoder layers and the pooler layer.
24
+ num_hidden_layers (`int`, *optional*, defaults to 32):
25
+ Number of hidden layers in the Transformer decoder.
26
+ num_attention_heads (`int`, *optional*, defaults to 32):
27
+ Number of attention heads for each attention layer in the Transformer encoder.
28
+ num_key_value_heads (`int`, *optional*):
29
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
30
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
31
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
32
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
33
+ by meanpooling all the original heads within that group. For more details checkout [this
34
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
35
+ `num_attention_heads`.
36
+ rope_pct (`float`, *optional*, defaults to 1.0):
37
+ Percentage of hidden dimensions to allocate to rotary embeddings.
38
+ rope_theta (`float`, *optional*, defaults to 10000.0):
39
+ The base period of the RoPE embeddings.
40
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
41
+ The maximum sequence length that this model might ever be used with.
42
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
43
+ num_experts (`int`, *optional*, defaults to 8):
44
+ Number of experts in the TCMoE layer.
45
+ top_k (`int`, *optional*, defaults to 2):
46
+ Number of top experts to use in the TCMoE layer.
47
+ num_null_experts (`int`, *optional*, defaults to 2):
48
+ Number of null experts in the TCMoE layer.
49
+ initializer_range (`float`, *optional*, defaults to 1e-5):
50
+ The standard deviation of the truncated_normal_initializer for initializing
51
+ all weight matrices.
52
+ norm_eps (`float`, *optional*, defaults to 1e-8):
53
+ The epsilon used by the normalization layers.
54
+ use_cache (`bool`, *optional*, defaults to `True`):
55
+ Whether or not the model should return the last key/values attentions
56
+ (not used by all models). Only relevant if `config.is_decoder=True`.
57
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
58
+ Whether to tie weight embeddings
59
+ """
60
+ model_type = "tcmoe"
61
+ keys_to_ignore_at_inference = ["past_key_values"]
62
+
63
+ def __init__(
64
+ self,
65
+ vocab_size=50432,
66
+ intermediate_size=2816,
67
+ hidden_size=1024,
68
+ num_hidden_layers=32,
69
+ num_attention_heads=16,
70
+ num_key_value_heads=2,
71
+ rope_pct=1.0,
72
+ rope_theta=10000.0,
73
+ max_position_embeddings=2048,
74
+ num_experts=8,
75
+ moe_topk=2,
76
+ num_null_experts=2,
77
+ initializer_range=0.006,
78
+ norm_eps=1e-8,
79
+ use_cache=True,
80
+ bos_token_id=0,
81
+ eos_token_id=0,
82
+ tie_word_embeddings=True,
83
+ **kwargs,
84
+ ):
85
+ self.vocab_size = vocab_size
86
+ self.intermediate_size = intermediate_size
87
+ self.hidden_size = hidden_size
88
+ self.num_hidden_layers = num_hidden_layers
89
+ self.num_attention_heads = num_attention_heads
90
+ self.num_key_value_heads = num_key_value_heads
91
+ self.rope_pct = rope_pct
92
+ self.rope_theta = rope_theta
93
+ self.max_position_embeddings = max_position_embeddings
94
+ self.num_experts = num_experts
95
+ self.moe_topk = moe_topk
96
+ self.num_null_experts = num_null_experts
97
+ self.initializer_range = initializer_range
98
+ self.norm_eps = norm_eps
99
+ self.use_cache = use_cache
100
+ super().__init__(
101
+ bos_token_id=bos_token_id,
102
+ eos_token_id=eos_token_id,
103
+ tie_word_embeddings=tie_word_embeddings,
104
+ **kwargs,
105
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "pad_token_id": 1,
6
+ "transformers_version": "4.49.0"
7
+ }
model-00001-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90d07f3aeb8643dd02704b0d27c7414808a64c53542a2fb90faf2eb2ae173dfc
3
+ size 498160032
model-00002-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53cfd8caa2c9e8463635e9c219748bf1bf3e530138532dd8228f35568ad52ed2
3
+ size 498236040
model-00003-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:675c9faade10a982f2967c479a5ca3a85725f03b3859aae1d01b0cab86346791
3
+ size 491953216
model-00004-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9841c59f16a808783a7e55ad736795092484dcae8fe2e6b23f0c0bf7dd95fc97
3
+ size 491953224
model-00005-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ef57825824a6f5b84b8eee636a8c0ac67981c3b2cd0e514533b48355a394afa
3
+ size 493967424
model-00006-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c6259281b636b15270a749581217b6e40fc54e3686b1d3d075b2801c4e798c
3
+ size 491953216
model-00007-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99b50dba3ca79383985679564673a9329ab169b74557aa9f152ae280db54476
3
+ size 491953264
model-00008-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8672c5c84f1d63968163cc3ebb20cdab2e2e01135e66e659ddf3dea3a1256ba4
3
+ size 491953280
model-00009-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c392741f002ee5b706fd6fd782bb2aa7be6262affd6513e7e18487322741fe
3
+ size 493967472
model-00010-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0105702f7736aaa02d1426b78c0a5b6308328cb4f622738575541a3717f3f074
3
+ size 491953272
model-00011-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d244602a007747106e0388f97a3b9566af754ba2875d69c756f1b70e30d06a9f
3
+ size 491953272
model-00012-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:856761815382338415e391fcd171e0262da0bab418c23019244c567b7a17822b
3
+ size 493967472
model-00013-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7d7f063c85714bb203f1fb5b3b41b0becc0672c4924b6757004546b5c298247
3
+ size 491953272
model-00014-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eae682f0ba53f0d7c13c2f725ded2d99634fa91b1194746271bb4ca00e34b7b2
3
+ size 491953272
model-00015-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28e639ecd56371e49f66726f3fe1876aa46408a6698721866b56c2e0382c405a
3
+ size 491953272
model-00016-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:508d0e4ea3c9a21212513f26bfd181fd0bd9d5cf0b4c27f4ef5603736a83857e
3
+ size 493967472
model-00017-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b24beb8f65124438c509cebb9000873f8f3f127bd0485a9db0ba21f15f1b0990
3
+ size 491953272
model-00018-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41d2fac289da771fc4b24fdc73f9214d836faa92122c8578329cd23684508bb5
3
+ size 491953272
model-00019-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90bc3501c02eb232a1ecd8df7708b679c71d3ef2627819ba33131622706467c6
3
+ size 493984264
model.safetensors.index.json ADDED
@@ -0,0 +1,1034 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9369567232
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00019.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00019.safetensors",
8
+ "model.layers.0.mlp.experts.0.down_proj.weight": "model-00001-of-00019.safetensors",
9
+ "model.layers.0.mlp.experts.0.gate_proj.weight": "model-00001-of-00019.safetensors",
10
+ "model.layers.0.mlp.experts.0.up_proj.weight": "model-00001-of-00019.safetensors",
11
+ "model.layers.0.mlp.experts.1.down_proj.weight": "model-00001-of-00019.safetensors",
12
+ "model.layers.0.mlp.experts.1.gate_proj.weight": "model-00001-of-00019.safetensors",
13
+ "model.layers.0.mlp.experts.1.up_proj.weight": "model-00001-of-00019.safetensors",
14
+ "model.layers.0.mlp.experts.2.down_proj.weight": "model-00001-of-00019.safetensors",
15
+ "model.layers.0.mlp.experts.2.gate_proj.weight": "model-00001-of-00019.safetensors",
16
+ "model.layers.0.mlp.experts.2.up_proj.weight": "model-00001-of-00019.safetensors",
17
+ "model.layers.0.mlp.experts.3.down_proj.weight": "model-00001-of-00019.safetensors",
18
+ "model.layers.0.mlp.experts.3.gate_proj.weight": "model-00001-of-00019.safetensors",
19
+ "model.layers.0.mlp.experts.3.up_proj.weight": "model-00001-of-00019.safetensors",
20
+ "model.layers.0.mlp.experts.4.down_proj.weight": "model-00001-of-00019.safetensors",
21
+ "model.layers.0.mlp.experts.4.gate_proj.weight": "model-00001-of-00019.safetensors",
22
+ "model.layers.0.mlp.experts.4.up_proj.weight": "model-00001-of-00019.safetensors",
23
+ "model.layers.0.mlp.experts.5.down_proj.weight": "model-00001-of-00019.safetensors",
24
+ "model.layers.0.mlp.experts.5.gate_proj.weight": "model-00001-of-00019.safetensors",
25
+ "model.layers.0.mlp.experts.5.up_proj.weight": "model-00001-of-00019.safetensors",
26
+ "model.layers.0.mlp.experts.6.down_proj.weight": "model-00001-of-00019.safetensors",
27
+ "model.layers.0.mlp.experts.6.gate_proj.weight": "model-00001-of-00019.safetensors",
28
+ "model.layers.0.mlp.experts.6.up_proj.weight": "model-00001-of-00019.safetensors",
29
+ "model.layers.0.mlp.experts.7.down_proj.weight": "model-00001-of-00019.safetensors",
30
+ "model.layers.0.mlp.experts.7.gate_proj.weight": "model-00001-of-00019.safetensors",
31
+ "model.layers.0.mlp.experts.7.up_proj.weight": "model-00001-of-00019.safetensors",
32
+ "model.layers.0.mlp.gate.weight": "model-00001-of-00019.safetensors",
33
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00019.safetensors",
34
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00019.safetensors",
35
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
36
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00019.safetensors",
37
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
38
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
39
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00019.safetensors",
40
+ "model.layers.1.mlp.experts.0.down_proj.weight": "model-00002-of-00019.safetensors",
41
+ "model.layers.1.mlp.experts.0.gate_proj.weight": "model-00002-of-00019.safetensors",
42
+ "model.layers.1.mlp.experts.0.up_proj.weight": "model-00002-of-00019.safetensors",
43
+ "model.layers.1.mlp.experts.1.down_proj.weight": "model-00002-of-00019.safetensors",
44
+ "model.layers.1.mlp.experts.1.gate_proj.weight": "model-00002-of-00019.safetensors",
45
+ "model.layers.1.mlp.experts.1.up_proj.weight": "model-00002-of-00019.safetensors",
46
+ "model.layers.1.mlp.experts.2.down_proj.weight": "model-00002-of-00019.safetensors",
47
+ "model.layers.1.mlp.experts.2.gate_proj.weight": "model-00002-of-00019.safetensors",
48
+ "model.layers.1.mlp.experts.2.up_proj.weight": "model-00002-of-00019.safetensors",
49
+ "model.layers.1.mlp.experts.3.down_proj.weight": "model-00002-of-00019.safetensors",
50
+ "model.layers.1.mlp.experts.3.gate_proj.weight": "model-00002-of-00019.safetensors",
51
+ "model.layers.1.mlp.experts.3.up_proj.weight": "model-00002-of-00019.safetensors",
52
+ "model.layers.1.mlp.experts.4.down_proj.weight": "model-00002-of-00019.safetensors",
53
+ "model.layers.1.mlp.experts.4.gate_proj.weight": "model-00002-of-00019.safetensors",
54
+ "model.layers.1.mlp.experts.4.up_proj.weight": "model-00002-of-00019.safetensors",
55
+ "model.layers.1.mlp.experts.5.down_proj.weight": "model-00002-of-00019.safetensors",
56
+ "model.layers.1.mlp.experts.5.gate_proj.weight": "model-00002-of-00019.safetensors",
57
+ "model.layers.1.mlp.experts.5.up_proj.weight": "model-00002-of-00019.safetensors",
58
+ "model.layers.1.mlp.experts.6.down_proj.weight": "model-00002-of-00019.safetensors",
59
+ "model.layers.1.mlp.experts.6.gate_proj.weight": "model-00002-of-00019.safetensors",
60
+ "model.layers.1.mlp.experts.6.up_proj.weight": "model-00002-of-00019.safetensors",
61
+ "model.layers.1.mlp.experts.7.down_proj.weight": "model-00002-of-00019.safetensors",
62
+ "model.layers.1.mlp.experts.7.gate_proj.weight": "model-00002-of-00019.safetensors",
63
+ "model.layers.1.mlp.experts.7.up_proj.weight": "model-00002-of-00019.safetensors",
64
+ "model.layers.1.mlp.gate.weight": "model-00002-of-00019.safetensors",
65
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00019.safetensors",
66
+ "model.layers.1.self_attn.k_norm.weight": "model-00002-of-00019.safetensors",
67
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
68
+ "model.layers.1.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
69
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
70
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
71
+ "model.layers.10.input_layernorm.weight": "model-00007-of-00019.safetensors",
72
+ "model.layers.10.mlp.experts.0.down_proj.weight": "model-00007-of-00019.safetensors",
73
+ "model.layers.10.mlp.experts.0.gate_proj.weight": "model-00007-of-00019.safetensors",
74
+ "model.layers.10.mlp.experts.0.up_proj.weight": "model-00007-of-00019.safetensors",
75
+ "model.layers.10.mlp.experts.1.down_proj.weight": "model-00007-of-00019.safetensors",
76
+ "model.layers.10.mlp.experts.1.gate_proj.weight": "model-00007-of-00019.safetensors",
77
+ "model.layers.10.mlp.experts.1.up_proj.weight": "model-00007-of-00019.safetensors",
78
+ "model.layers.10.mlp.experts.2.down_proj.weight": "model-00007-of-00019.safetensors",
79
+ "model.layers.10.mlp.experts.2.gate_proj.weight": "model-00007-of-00019.safetensors",
80
+ "model.layers.10.mlp.experts.2.up_proj.weight": "model-00007-of-00019.safetensors",
81
+ "model.layers.10.mlp.experts.3.down_proj.weight": "model-00007-of-00019.safetensors",
82
+ "model.layers.10.mlp.experts.3.gate_proj.weight": "model-00007-of-00019.safetensors",
83
+ "model.layers.10.mlp.experts.3.up_proj.weight": "model-00007-of-00019.safetensors",
84
+ "model.layers.10.mlp.experts.4.down_proj.weight": "model-00007-of-00019.safetensors",
85
+ "model.layers.10.mlp.experts.4.gate_proj.weight": "model-00007-of-00019.safetensors",
86
+ "model.layers.10.mlp.experts.4.up_proj.weight": "model-00007-of-00019.safetensors",
87
+ "model.layers.10.mlp.experts.5.down_proj.weight": "model-00007-of-00019.safetensors",
88
+ "model.layers.10.mlp.experts.5.gate_proj.weight": "model-00007-of-00019.safetensors",
89
+ "model.layers.10.mlp.experts.5.up_proj.weight": "model-00007-of-00019.safetensors",
90
+ "model.layers.10.mlp.experts.6.down_proj.weight": "model-00007-of-00019.safetensors",
91
+ "model.layers.10.mlp.experts.6.gate_proj.weight": "model-00007-of-00019.safetensors",
92
+ "model.layers.10.mlp.experts.6.up_proj.weight": "model-00007-of-00019.safetensors",
93
+ "model.layers.10.mlp.experts.7.down_proj.weight": "model-00007-of-00019.safetensors",
94
+ "model.layers.10.mlp.experts.7.gate_proj.weight": "model-00007-of-00019.safetensors",
95
+ "model.layers.10.mlp.experts.7.up_proj.weight": "model-00007-of-00019.safetensors",
96
+ "model.layers.10.mlp.gate.weight": "model-00007-of-00019.safetensors",
97
+ "model.layers.10.post_attention_layernorm.weight": "model-00007-of-00019.safetensors",
98
+ "model.layers.10.self_attn.k_norm.weight": "model-00007-of-00019.safetensors",
99
+ "model.layers.10.self_attn.k_proj.weight": "model-00007-of-00019.safetensors",
100
+ "model.layers.10.self_attn.o_proj.weight": "model-00007-of-00019.safetensors",
101
+ "model.layers.10.self_attn.q_proj.weight": "model-00007-of-00019.safetensors",
102
+ "model.layers.10.self_attn.v_proj.weight": "model-00007-of-00019.safetensors",
103
+ "model.layers.11.input_layernorm.weight": "model-00008-of-00019.safetensors",
104
+ "model.layers.11.mlp.experts.0.down_proj.weight": "model-00007-of-00019.safetensors",
105
+ "model.layers.11.mlp.experts.0.gate_proj.weight": "model-00007-of-00019.safetensors",
106
+ "model.layers.11.mlp.experts.0.up_proj.weight": "model-00007-of-00019.safetensors",
107
+ "model.layers.11.mlp.experts.1.down_proj.weight": "model-00007-of-00019.safetensors",
108
+ "model.layers.11.mlp.experts.1.gate_proj.weight": "model-00007-of-00019.safetensors",
109
+ "model.layers.11.mlp.experts.1.up_proj.weight": "model-00007-of-00019.safetensors",
110
+ "model.layers.11.mlp.experts.2.down_proj.weight": "model-00008-of-00019.safetensors",
111
+ "model.layers.11.mlp.experts.2.gate_proj.weight": "model-00007-of-00019.safetensors",
112
+ "model.layers.11.mlp.experts.2.up_proj.weight": "model-00007-of-00019.safetensors",
113
+ "model.layers.11.mlp.experts.3.down_proj.weight": "model-00008-of-00019.safetensors",
114
+ "model.layers.11.mlp.experts.3.gate_proj.weight": "model-00008-of-00019.safetensors",
115
+ "model.layers.11.mlp.experts.3.up_proj.weight": "model-00008-of-00019.safetensors",
116
+ "model.layers.11.mlp.experts.4.down_proj.weight": "model-00008-of-00019.safetensors",
117
+ "model.layers.11.mlp.experts.4.gate_proj.weight": "model-00008-of-00019.safetensors",
118
+ "model.layers.11.mlp.experts.4.up_proj.weight": "model-00008-of-00019.safetensors",
119
+ "model.layers.11.mlp.experts.5.down_proj.weight": "model-00008-of-00019.safetensors",
120
+ "model.layers.11.mlp.experts.5.gate_proj.weight": "model-00008-of-00019.safetensors",
121
+ "model.layers.11.mlp.experts.5.up_proj.weight": "model-00008-of-00019.safetensors",
122
+ "model.layers.11.mlp.experts.6.down_proj.weight": "model-00008-of-00019.safetensors",
123
+ "model.layers.11.mlp.experts.6.gate_proj.weight": "model-00008-of-00019.safetensors",
124
+ "model.layers.11.mlp.experts.6.up_proj.weight": "model-00008-of-00019.safetensors",
125
+ "model.layers.11.mlp.experts.7.down_proj.weight": "model-00008-of-00019.safetensors",
126
+ "model.layers.11.mlp.experts.7.gate_proj.weight": "model-00008-of-00019.safetensors",
127
+ "model.layers.11.mlp.experts.7.up_proj.weight": "model-00008-of-00019.safetensors",
128
+ "model.layers.11.mlp.gate.weight": "model-00007-of-00019.safetensors",
129
+ "model.layers.11.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
130
+ "model.layers.11.self_attn.k_norm.weight": "model-00007-of-00019.safetensors",
131
+ "model.layers.11.self_attn.k_proj.weight": "model-00007-of-00019.safetensors",
132
+ "model.layers.11.self_attn.o_proj.weight": "model-00007-of-00019.safetensors",
133
+ "model.layers.11.self_attn.q_proj.weight": "model-00007-of-00019.safetensors",
134
+ "model.layers.11.self_attn.v_proj.weight": "model-00007-of-00019.safetensors",
135
+ "model.layers.12.input_layernorm.weight": "model-00008-of-00019.safetensors",
136
+ "model.layers.12.mlp.experts.0.down_proj.weight": "model-00008-of-00019.safetensors",
137
+ "model.layers.12.mlp.experts.0.gate_proj.weight": "model-00008-of-00019.safetensors",
138
+ "model.layers.12.mlp.experts.0.up_proj.weight": "model-00008-of-00019.safetensors",
139
+ "model.layers.12.mlp.experts.1.down_proj.weight": "model-00008-of-00019.safetensors",
140
+ "model.layers.12.mlp.experts.1.gate_proj.weight": "model-00008-of-00019.safetensors",
141
+ "model.layers.12.mlp.experts.1.up_proj.weight": "model-00008-of-00019.safetensors",
142
+ "model.layers.12.mlp.experts.2.down_proj.weight": "model-00008-of-00019.safetensors",
143
+ "model.layers.12.mlp.experts.2.gate_proj.weight": "model-00008-of-00019.safetensors",
144
+ "model.layers.12.mlp.experts.2.up_proj.weight": "model-00008-of-00019.safetensors",
145
+ "model.layers.12.mlp.experts.3.down_proj.weight": "model-00008-of-00019.safetensors",
146
+ "model.layers.12.mlp.experts.3.gate_proj.weight": "model-00008-of-00019.safetensors",
147
+ "model.layers.12.mlp.experts.3.up_proj.weight": "model-00008-of-00019.safetensors",
148
+ "model.layers.12.mlp.experts.4.down_proj.weight": "model-00008-of-00019.safetensors",
149
+ "model.layers.12.mlp.experts.4.gate_proj.weight": "model-00008-of-00019.safetensors",
150
+ "model.layers.12.mlp.experts.4.up_proj.weight": "model-00008-of-00019.safetensors",
151
+ "model.layers.12.mlp.experts.5.down_proj.weight": "model-00008-of-00019.safetensors",
152
+ "model.layers.12.mlp.experts.5.gate_proj.weight": "model-00008-of-00019.safetensors",
153
+ "model.layers.12.mlp.experts.5.up_proj.weight": "model-00008-of-00019.safetensors",
154
+ "model.layers.12.mlp.experts.6.down_proj.weight": "model-00008-of-00019.safetensors",
155
+ "model.layers.12.mlp.experts.6.gate_proj.weight": "model-00008-of-00019.safetensors",
156
+ "model.layers.12.mlp.experts.6.up_proj.weight": "model-00008-of-00019.safetensors",
157
+ "model.layers.12.mlp.experts.7.down_proj.weight": "model-00008-of-00019.safetensors",
158
+ "model.layers.12.mlp.experts.7.gate_proj.weight": "model-00008-of-00019.safetensors",
159
+ "model.layers.12.mlp.experts.7.up_proj.weight": "model-00008-of-00019.safetensors",
160
+ "model.layers.12.mlp.gate.weight": "model-00008-of-00019.safetensors",
161
+ "model.layers.12.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
162
+ "model.layers.12.self_attn.k_norm.weight": "model-00008-of-00019.safetensors",
163
+ "model.layers.12.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
164
+ "model.layers.12.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
165
+ "model.layers.12.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
166
+ "model.layers.12.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
167
+ "model.layers.13.input_layernorm.weight": "model-00009-of-00019.safetensors",
168
+ "model.layers.13.mlp.experts.0.down_proj.weight": "model-00009-of-00019.safetensors",
169
+ "model.layers.13.mlp.experts.0.gate_proj.weight": "model-00008-of-00019.safetensors",
170
+ "model.layers.13.mlp.experts.0.up_proj.weight": "model-00009-of-00019.safetensors",
171
+ "model.layers.13.mlp.experts.1.down_proj.weight": "model-00009-of-00019.safetensors",
172
+ "model.layers.13.mlp.experts.1.gate_proj.weight": "model-00009-of-00019.safetensors",
173
+ "model.layers.13.mlp.experts.1.up_proj.weight": "model-00009-of-00019.safetensors",
174
+ "model.layers.13.mlp.experts.2.down_proj.weight": "model-00009-of-00019.safetensors",
175
+ "model.layers.13.mlp.experts.2.gate_proj.weight": "model-00009-of-00019.safetensors",
176
+ "model.layers.13.mlp.experts.2.up_proj.weight": "model-00009-of-00019.safetensors",
177
+ "model.layers.13.mlp.experts.3.down_proj.weight": "model-00009-of-00019.safetensors",
178
+ "model.layers.13.mlp.experts.3.gate_proj.weight": "model-00009-of-00019.safetensors",
179
+ "model.layers.13.mlp.experts.3.up_proj.weight": "model-00009-of-00019.safetensors",
180
+ "model.layers.13.mlp.experts.4.down_proj.weight": "model-00009-of-00019.safetensors",
181
+ "model.layers.13.mlp.experts.4.gate_proj.weight": "model-00009-of-00019.safetensors",
182
+ "model.layers.13.mlp.experts.4.up_proj.weight": "model-00009-of-00019.safetensors",
183
+ "model.layers.13.mlp.experts.5.down_proj.weight": "model-00009-of-00019.safetensors",
184
+ "model.layers.13.mlp.experts.5.gate_proj.weight": "model-00009-of-00019.safetensors",
185
+ "model.layers.13.mlp.experts.5.up_proj.weight": "model-00009-of-00019.safetensors",
186
+ "model.layers.13.mlp.experts.6.down_proj.weight": "model-00009-of-00019.safetensors",
187
+ "model.layers.13.mlp.experts.6.gate_proj.weight": "model-00009-of-00019.safetensors",
188
+ "model.layers.13.mlp.experts.6.up_proj.weight": "model-00009-of-00019.safetensors",
189
+ "model.layers.13.mlp.experts.7.down_proj.weight": "model-00009-of-00019.safetensors",
190
+ "model.layers.13.mlp.experts.7.gate_proj.weight": "model-00009-of-00019.safetensors",
191
+ "model.layers.13.mlp.experts.7.up_proj.weight": "model-00009-of-00019.safetensors",
192
+ "model.layers.13.mlp.gate.weight": "model-00008-of-00019.safetensors",
193
+ "model.layers.13.post_attention_layernorm.weight": "model-00009-of-00019.safetensors",
194
+ "model.layers.13.self_attn.k_norm.weight": "model-00008-of-00019.safetensors",
195
+ "model.layers.13.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
196
+ "model.layers.13.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
197
+ "model.layers.13.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
198
+ "model.layers.13.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
199
+ "model.layers.14.input_layernorm.weight": "model-00010-of-00019.safetensors",
200
+ "model.layers.14.mlp.experts.0.down_proj.weight": "model-00009-of-00019.safetensors",
201
+ "model.layers.14.mlp.experts.0.gate_proj.weight": "model-00009-of-00019.safetensors",
202
+ "model.layers.14.mlp.experts.0.up_proj.weight": "model-00009-of-00019.safetensors",
203
+ "model.layers.14.mlp.experts.1.down_proj.weight": "model-00009-of-00019.safetensors",
204
+ "model.layers.14.mlp.experts.1.gate_proj.weight": "model-00009-of-00019.safetensors",
205
+ "model.layers.14.mlp.experts.1.up_proj.weight": "model-00009-of-00019.safetensors",
206
+ "model.layers.14.mlp.experts.2.down_proj.weight": "model-00009-of-00019.safetensors",
207
+ "model.layers.14.mlp.experts.2.gate_proj.weight": "model-00009-of-00019.safetensors",
208
+ "model.layers.14.mlp.experts.2.up_proj.weight": "model-00009-of-00019.safetensors",
209
+ "model.layers.14.mlp.experts.3.down_proj.weight": "model-00009-of-00019.safetensors",
210
+ "model.layers.14.mlp.experts.3.gate_proj.weight": "model-00009-of-00019.safetensors",
211
+ "model.layers.14.mlp.experts.3.up_proj.weight": "model-00009-of-00019.safetensors",
212
+ "model.layers.14.mlp.experts.4.down_proj.weight": "model-00009-of-00019.safetensors",
213
+ "model.layers.14.mlp.experts.4.gate_proj.weight": "model-00009-of-00019.safetensors",
214
+ "model.layers.14.mlp.experts.4.up_proj.weight": "model-00009-of-00019.safetensors",
215
+ "model.layers.14.mlp.experts.5.down_proj.weight": "model-00009-of-00019.safetensors",
216
+ "model.layers.14.mlp.experts.5.gate_proj.weight": "model-00009-of-00019.safetensors",
217
+ "model.layers.14.mlp.experts.5.up_proj.weight": "model-00009-of-00019.safetensors",
218
+ "model.layers.14.mlp.experts.6.down_proj.weight": "model-00010-of-00019.safetensors",
219
+ "model.layers.14.mlp.experts.6.gate_proj.weight": "model-00009-of-00019.safetensors",
220
+ "model.layers.14.mlp.experts.6.up_proj.weight": "model-00010-of-00019.safetensors",
221
+ "model.layers.14.mlp.experts.7.down_proj.weight": "model-00010-of-00019.safetensors",
222
+ "model.layers.14.mlp.experts.7.gate_proj.weight": "model-00010-of-00019.safetensors",
223
+ "model.layers.14.mlp.experts.7.up_proj.weight": "model-00010-of-00019.safetensors",
224
+ "model.layers.14.mlp.gate.weight": "model-00009-of-00019.safetensors",
225
+ "model.layers.14.post_attention_layernorm.weight": "model-00010-of-00019.safetensors",
226
+ "model.layers.14.self_attn.k_norm.weight": "model-00009-of-00019.safetensors",
227
+ "model.layers.14.self_attn.k_proj.weight": "model-00009-of-00019.safetensors",
228
+ "model.layers.14.self_attn.o_proj.weight": "model-00009-of-00019.safetensors",
229
+ "model.layers.14.self_attn.q_proj.weight": "model-00009-of-00019.safetensors",
230
+ "model.layers.14.self_attn.v_proj.weight": "model-00009-of-00019.safetensors",
231
+ "model.layers.15.input_layernorm.weight": "model-00010-of-00019.safetensors",
232
+ "model.layers.15.mlp.experts.0.down_proj.weight": "model-00010-of-00019.safetensors",
233
+ "model.layers.15.mlp.experts.0.gate_proj.weight": "model-00010-of-00019.safetensors",
234
+ "model.layers.15.mlp.experts.0.up_proj.weight": "model-00010-of-00019.safetensors",
235
+ "model.layers.15.mlp.experts.1.down_proj.weight": "model-00010-of-00019.safetensors",
236
+ "model.layers.15.mlp.experts.1.gate_proj.weight": "model-00010-of-00019.safetensors",
237
+ "model.layers.15.mlp.experts.1.up_proj.weight": "model-00010-of-00019.safetensors",
238
+ "model.layers.15.mlp.experts.2.down_proj.weight": "model-00010-of-00019.safetensors",
239
+ "model.layers.15.mlp.experts.2.gate_proj.weight": "model-00010-of-00019.safetensors",
240
+ "model.layers.15.mlp.experts.2.up_proj.weight": "model-00010-of-00019.safetensors",
241
+ "model.layers.15.mlp.experts.3.down_proj.weight": "model-00010-of-00019.safetensors",
242
+ "model.layers.15.mlp.experts.3.gate_proj.weight": "model-00010-of-00019.safetensors",
243
+ "model.layers.15.mlp.experts.3.up_proj.weight": "model-00010-of-00019.safetensors",
244
+ "model.layers.15.mlp.experts.4.down_proj.weight": "model-00010-of-00019.safetensors",
245
+ "model.layers.15.mlp.experts.4.gate_proj.weight": "model-00010-of-00019.safetensors",
246
+ "model.layers.15.mlp.experts.4.up_proj.weight": "model-00010-of-00019.safetensors",
247
+ "model.layers.15.mlp.experts.5.down_proj.weight": "model-00010-of-00019.safetensors",
248
+ "model.layers.15.mlp.experts.5.gate_proj.weight": "model-00010-of-00019.safetensors",
249
+ "model.layers.15.mlp.experts.5.up_proj.weight": "model-00010-of-00019.safetensors",
250
+ "model.layers.15.mlp.experts.6.down_proj.weight": "model-00010-of-00019.safetensors",
251
+ "model.layers.15.mlp.experts.6.gate_proj.weight": "model-00010-of-00019.safetensors",
252
+ "model.layers.15.mlp.experts.6.up_proj.weight": "model-00010-of-00019.safetensors",
253
+ "model.layers.15.mlp.experts.7.down_proj.weight": "model-00010-of-00019.safetensors",
254
+ "model.layers.15.mlp.experts.7.gate_proj.weight": "model-00010-of-00019.safetensors",
255
+ "model.layers.15.mlp.experts.7.up_proj.weight": "model-00010-of-00019.safetensors",
256
+ "model.layers.15.mlp.gate.weight": "model-00010-of-00019.safetensors",
257
+ "model.layers.15.post_attention_layernorm.weight": "model-00010-of-00019.safetensors",
258
+ "model.layers.15.self_attn.k_norm.weight": "model-00010-of-00019.safetensors",
259
+ "model.layers.15.self_attn.k_proj.weight": "model-00010-of-00019.safetensors",
260
+ "model.layers.15.self_attn.o_proj.weight": "model-00010-of-00019.safetensors",
261
+ "model.layers.15.self_attn.q_proj.weight": "model-00010-of-00019.safetensors",
262
+ "model.layers.15.self_attn.v_proj.weight": "model-00010-of-00019.safetensors",
263
+ "model.layers.16.input_layernorm.weight": "model-00011-of-00019.safetensors",
264
+ "model.layers.16.mlp.experts.0.down_proj.weight": "model-00010-of-00019.safetensors",
265
+ "model.layers.16.mlp.experts.0.gate_proj.weight": "model-00010-of-00019.safetensors",
266
+ "model.layers.16.mlp.experts.0.up_proj.weight": "model-00010-of-00019.safetensors",
267
+ "model.layers.16.mlp.experts.1.down_proj.weight": "model-00010-of-00019.safetensors",
268
+ "model.layers.16.mlp.experts.1.gate_proj.weight": "model-00010-of-00019.safetensors",
269
+ "model.layers.16.mlp.experts.1.up_proj.weight": "model-00010-of-00019.safetensors",
270
+ "model.layers.16.mlp.experts.2.down_proj.weight": "model-00010-of-00019.safetensors",
271
+ "model.layers.16.mlp.experts.2.gate_proj.weight": "model-00010-of-00019.safetensors",
272
+ "model.layers.16.mlp.experts.2.up_proj.weight": "model-00010-of-00019.safetensors",
273
+ "model.layers.16.mlp.experts.3.down_proj.weight": "model-00010-of-00019.safetensors",
274
+ "model.layers.16.mlp.experts.3.gate_proj.weight": "model-00010-of-00019.safetensors",
275
+ "model.layers.16.mlp.experts.3.up_proj.weight": "model-00010-of-00019.safetensors",
276
+ "model.layers.16.mlp.experts.4.down_proj.weight": "model-00011-of-00019.safetensors",
277
+ "model.layers.16.mlp.experts.4.gate_proj.weight": "model-00011-of-00019.safetensors",
278
+ "model.layers.16.mlp.experts.4.up_proj.weight": "model-00011-of-00019.safetensors",
279
+ "model.layers.16.mlp.experts.5.down_proj.weight": "model-00011-of-00019.safetensors",
280
+ "model.layers.16.mlp.experts.5.gate_proj.weight": "model-00011-of-00019.safetensors",
281
+ "model.layers.16.mlp.experts.5.up_proj.weight": "model-00011-of-00019.safetensors",
282
+ "model.layers.16.mlp.experts.6.down_proj.weight": "model-00011-of-00019.safetensors",
283
+ "model.layers.16.mlp.experts.6.gate_proj.weight": "model-00011-of-00019.safetensors",
284
+ "model.layers.16.mlp.experts.6.up_proj.weight": "model-00011-of-00019.safetensors",
285
+ "model.layers.16.mlp.experts.7.down_proj.weight": "model-00011-of-00019.safetensors",
286
+ "model.layers.16.mlp.experts.7.gate_proj.weight": "model-00011-of-00019.safetensors",
287
+ "model.layers.16.mlp.experts.7.up_proj.weight": "model-00011-of-00019.safetensors",
288
+ "model.layers.16.mlp.gate.weight": "model-00010-of-00019.safetensors",
289
+ "model.layers.16.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
290
+ "model.layers.16.self_attn.k_norm.weight": "model-00010-of-00019.safetensors",
291
+ "model.layers.16.self_attn.k_proj.weight": "model-00010-of-00019.safetensors",
292
+ "model.layers.16.self_attn.o_proj.weight": "model-00010-of-00019.safetensors",
293
+ "model.layers.16.self_attn.q_proj.weight": "model-00010-of-00019.safetensors",
294
+ "model.layers.16.self_attn.v_proj.weight": "model-00010-of-00019.safetensors",
295
+ "model.layers.17.input_layernorm.weight": "model-00011-of-00019.safetensors",
296
+ "model.layers.17.mlp.experts.0.down_proj.weight": "model-00011-of-00019.safetensors",
297
+ "model.layers.17.mlp.experts.0.gate_proj.weight": "model-00011-of-00019.safetensors",
298
+ "model.layers.17.mlp.experts.0.up_proj.weight": "model-00011-of-00019.safetensors",
299
+ "model.layers.17.mlp.experts.1.down_proj.weight": "model-00011-of-00019.safetensors",
300
+ "model.layers.17.mlp.experts.1.gate_proj.weight": "model-00011-of-00019.safetensors",
301
+ "model.layers.17.mlp.experts.1.up_proj.weight": "model-00011-of-00019.safetensors",
302
+ "model.layers.17.mlp.experts.2.down_proj.weight": "model-00011-of-00019.safetensors",
303
+ "model.layers.17.mlp.experts.2.gate_proj.weight": "model-00011-of-00019.safetensors",
304
+ "model.layers.17.mlp.experts.2.up_proj.weight": "model-00011-of-00019.safetensors",
305
+ "model.layers.17.mlp.experts.3.down_proj.weight": "model-00011-of-00019.safetensors",
306
+ "model.layers.17.mlp.experts.3.gate_proj.weight": "model-00011-of-00019.safetensors",
307
+ "model.layers.17.mlp.experts.3.up_proj.weight": "model-00011-of-00019.safetensors",
308
+ "model.layers.17.mlp.experts.4.down_proj.weight": "model-00011-of-00019.safetensors",
309
+ "model.layers.17.mlp.experts.4.gate_proj.weight": "model-00011-of-00019.safetensors",
310
+ "model.layers.17.mlp.experts.4.up_proj.weight": "model-00011-of-00019.safetensors",
311
+ "model.layers.17.mlp.experts.5.down_proj.weight": "model-00011-of-00019.safetensors",
312
+ "model.layers.17.mlp.experts.5.gate_proj.weight": "model-00011-of-00019.safetensors",
313
+ "model.layers.17.mlp.experts.5.up_proj.weight": "model-00011-of-00019.safetensors",
314
+ "model.layers.17.mlp.experts.6.down_proj.weight": "model-00011-of-00019.safetensors",
315
+ "model.layers.17.mlp.experts.6.gate_proj.weight": "model-00011-of-00019.safetensors",
316
+ "model.layers.17.mlp.experts.6.up_proj.weight": "model-00011-of-00019.safetensors",
317
+ "model.layers.17.mlp.experts.7.down_proj.weight": "model-00011-of-00019.safetensors",
318
+ "model.layers.17.mlp.experts.7.gate_proj.weight": "model-00011-of-00019.safetensors",
319
+ "model.layers.17.mlp.experts.7.up_proj.weight": "model-00011-of-00019.safetensors",
320
+ "model.layers.17.mlp.gate.weight": "model-00011-of-00019.safetensors",
321
+ "model.layers.17.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
322
+ "model.layers.17.self_attn.k_norm.weight": "model-00011-of-00019.safetensors",
323
+ "model.layers.17.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
324
+ "model.layers.17.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
325
+ "model.layers.17.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
326
+ "model.layers.17.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
327
+ "model.layers.18.input_layernorm.weight": "model-00012-of-00019.safetensors",
328
+ "model.layers.18.mlp.experts.0.down_proj.weight": "model-00011-of-00019.safetensors",
329
+ "model.layers.18.mlp.experts.0.gate_proj.weight": "model-00011-of-00019.safetensors",
330
+ "model.layers.18.mlp.experts.0.up_proj.weight": "model-00011-of-00019.safetensors",
331
+ "model.layers.18.mlp.experts.1.down_proj.weight": "model-00012-of-00019.safetensors",
332
+ "model.layers.18.mlp.experts.1.gate_proj.weight": "model-00011-of-00019.safetensors",
333
+ "model.layers.18.mlp.experts.1.up_proj.weight": "model-00011-of-00019.safetensors",
334
+ "model.layers.18.mlp.experts.2.down_proj.weight": "model-00012-of-00019.safetensors",
335
+ "model.layers.18.mlp.experts.2.gate_proj.weight": "model-00012-of-00019.safetensors",
336
+ "model.layers.18.mlp.experts.2.up_proj.weight": "model-00012-of-00019.safetensors",
337
+ "model.layers.18.mlp.experts.3.down_proj.weight": "model-00012-of-00019.safetensors",
338
+ "model.layers.18.mlp.experts.3.gate_proj.weight": "model-00012-of-00019.safetensors",
339
+ "model.layers.18.mlp.experts.3.up_proj.weight": "model-00012-of-00019.safetensors",
340
+ "model.layers.18.mlp.experts.4.down_proj.weight": "model-00012-of-00019.safetensors",
341
+ "model.layers.18.mlp.experts.4.gate_proj.weight": "model-00012-of-00019.safetensors",
342
+ "model.layers.18.mlp.experts.4.up_proj.weight": "model-00012-of-00019.safetensors",
343
+ "model.layers.18.mlp.experts.5.down_proj.weight": "model-00012-of-00019.safetensors",
344
+ "model.layers.18.mlp.experts.5.gate_proj.weight": "model-00012-of-00019.safetensors",
345
+ "model.layers.18.mlp.experts.5.up_proj.weight": "model-00012-of-00019.safetensors",
346
+ "model.layers.18.mlp.experts.6.down_proj.weight": "model-00012-of-00019.safetensors",
347
+ "model.layers.18.mlp.experts.6.gate_proj.weight": "model-00012-of-00019.safetensors",
348
+ "model.layers.18.mlp.experts.6.up_proj.weight": "model-00012-of-00019.safetensors",
349
+ "model.layers.18.mlp.experts.7.down_proj.weight": "model-00012-of-00019.safetensors",
350
+ "model.layers.18.mlp.experts.7.gate_proj.weight": "model-00012-of-00019.safetensors",
351
+ "model.layers.18.mlp.experts.7.up_proj.weight": "model-00012-of-00019.safetensors",
352
+ "model.layers.18.mlp.gate.weight": "model-00011-of-00019.safetensors",
353
+ "model.layers.18.post_attention_layernorm.weight": "model-00012-of-00019.safetensors",
354
+ "model.layers.18.self_attn.k_norm.weight": "model-00011-of-00019.safetensors",
355
+ "model.layers.18.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
356
+ "model.layers.18.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
357
+ "model.layers.18.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
358
+ "model.layers.18.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
359
+ "model.layers.19.input_layernorm.weight": "model-00013-of-00019.safetensors",
360
+ "model.layers.19.mlp.experts.0.down_proj.weight": "model-00012-of-00019.safetensors",
361
+ "model.layers.19.mlp.experts.0.gate_proj.weight": "model-00012-of-00019.safetensors",
362
+ "model.layers.19.mlp.experts.0.up_proj.weight": "model-00012-of-00019.safetensors",
363
+ "model.layers.19.mlp.experts.1.down_proj.weight": "model-00012-of-00019.safetensors",
364
+ "model.layers.19.mlp.experts.1.gate_proj.weight": "model-00012-of-00019.safetensors",
365
+ "model.layers.19.mlp.experts.1.up_proj.weight": "model-00012-of-00019.safetensors",
366
+ "model.layers.19.mlp.experts.2.down_proj.weight": "model-00012-of-00019.safetensors",
367
+ "model.layers.19.mlp.experts.2.gate_proj.weight": "model-00012-of-00019.safetensors",
368
+ "model.layers.19.mlp.experts.2.up_proj.weight": "model-00012-of-00019.safetensors",
369
+ "model.layers.19.mlp.experts.3.down_proj.weight": "model-00012-of-00019.safetensors",
370
+ "model.layers.19.mlp.experts.3.gate_proj.weight": "model-00012-of-00019.safetensors",
371
+ "model.layers.19.mlp.experts.3.up_proj.weight": "model-00012-of-00019.safetensors",
372
+ "model.layers.19.mlp.experts.4.down_proj.weight": "model-00012-of-00019.safetensors",
373
+ "model.layers.19.mlp.experts.4.gate_proj.weight": "model-00012-of-00019.safetensors",
374
+ "model.layers.19.mlp.experts.4.up_proj.weight": "model-00012-of-00019.safetensors",
375
+ "model.layers.19.mlp.experts.5.down_proj.weight": "model-00012-of-00019.safetensors",
376
+ "model.layers.19.mlp.experts.5.gate_proj.weight": "model-00012-of-00019.safetensors",
377
+ "model.layers.19.mlp.experts.5.up_proj.weight": "model-00012-of-00019.safetensors",
378
+ "model.layers.19.mlp.experts.6.down_proj.weight": "model-00012-of-00019.safetensors",
379
+ "model.layers.19.mlp.experts.6.gate_proj.weight": "model-00012-of-00019.safetensors",
380
+ "model.layers.19.mlp.experts.6.up_proj.weight": "model-00012-of-00019.safetensors",
381
+ "model.layers.19.mlp.experts.7.down_proj.weight": "model-00013-of-00019.safetensors",
382
+ "model.layers.19.mlp.experts.7.gate_proj.weight": "model-00012-of-00019.safetensors",
383
+ "model.layers.19.mlp.experts.7.up_proj.weight": "model-00012-of-00019.safetensors",
384
+ "model.layers.19.mlp.gate.weight": "model-00012-of-00019.safetensors",
385
+ "model.layers.19.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
386
+ "model.layers.19.self_attn.k_norm.weight": "model-00012-of-00019.safetensors",
387
+ "model.layers.19.self_attn.k_proj.weight": "model-00012-of-00019.safetensors",
388
+ "model.layers.19.self_attn.o_proj.weight": "model-00012-of-00019.safetensors",
389
+ "model.layers.19.self_attn.q_proj.weight": "model-00012-of-00019.safetensors",
390
+ "model.layers.19.self_attn.v_proj.weight": "model-00012-of-00019.safetensors",
391
+ "model.layers.2.input_layernorm.weight": "model-00003-of-00019.safetensors",
392
+ "model.layers.2.mlp.experts.0.down_proj.weight": "model-00002-of-00019.safetensors",
393
+ "model.layers.2.mlp.experts.0.gate_proj.weight": "model-00002-of-00019.safetensors",
394
+ "model.layers.2.mlp.experts.0.up_proj.weight": "model-00002-of-00019.safetensors",
395
+ "model.layers.2.mlp.experts.1.down_proj.weight": "model-00002-of-00019.safetensors",
396
+ "model.layers.2.mlp.experts.1.gate_proj.weight": "model-00002-of-00019.safetensors",
397
+ "model.layers.2.mlp.experts.1.up_proj.weight": "model-00002-of-00019.safetensors",
398
+ "model.layers.2.mlp.experts.2.down_proj.weight": "model-00002-of-00019.safetensors",
399
+ "model.layers.2.mlp.experts.2.gate_proj.weight": "model-00002-of-00019.safetensors",
400
+ "model.layers.2.mlp.experts.2.up_proj.weight": "model-00002-of-00019.safetensors",
401
+ "model.layers.2.mlp.experts.3.down_proj.weight": "model-00002-of-00019.safetensors",
402
+ "model.layers.2.mlp.experts.3.gate_proj.weight": "model-00002-of-00019.safetensors",
403
+ "model.layers.2.mlp.experts.3.up_proj.weight": "model-00002-of-00019.safetensors",
404
+ "model.layers.2.mlp.experts.4.down_proj.weight": "model-00002-of-00019.safetensors",
405
+ "model.layers.2.mlp.experts.4.gate_proj.weight": "model-00002-of-00019.safetensors",
406
+ "model.layers.2.mlp.experts.4.up_proj.weight": "model-00002-of-00019.safetensors",
407
+ "model.layers.2.mlp.experts.5.down_proj.weight": "model-00002-of-00019.safetensors",
408
+ "model.layers.2.mlp.experts.5.gate_proj.weight": "model-00002-of-00019.safetensors",
409
+ "model.layers.2.mlp.experts.5.up_proj.weight": "model-00002-of-00019.safetensors",
410
+ "model.layers.2.mlp.experts.6.down_proj.weight": "model-00003-of-00019.safetensors",
411
+ "model.layers.2.mlp.experts.6.gate_proj.weight": "model-00003-of-00019.safetensors",
412
+ "model.layers.2.mlp.experts.6.up_proj.weight": "model-00003-of-00019.safetensors",
413
+ "model.layers.2.mlp.experts.7.down_proj.weight": "model-00003-of-00019.safetensors",
414
+ "model.layers.2.mlp.experts.7.gate_proj.weight": "model-00003-of-00019.safetensors",
415
+ "model.layers.2.mlp.experts.7.up_proj.weight": "model-00003-of-00019.safetensors",
416
+ "model.layers.2.mlp.gate.weight": "model-00002-of-00019.safetensors",
417
+ "model.layers.2.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
418
+ "model.layers.2.self_attn.k_norm.weight": "model-00002-of-00019.safetensors",
419
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00019.safetensors",
420
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
421
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00019.safetensors",
422
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00019.safetensors",
423
+ "model.layers.20.input_layernorm.weight": "model-00013-of-00019.safetensors",
424
+ "model.layers.20.mlp.experts.0.down_proj.weight": "model-00013-of-00019.safetensors",
425
+ "model.layers.20.mlp.experts.0.gate_proj.weight": "model-00013-of-00019.safetensors",
426
+ "model.layers.20.mlp.experts.0.up_proj.weight": "model-00013-of-00019.safetensors",
427
+ "model.layers.20.mlp.experts.1.down_proj.weight": "model-00013-of-00019.safetensors",
428
+ "model.layers.20.mlp.experts.1.gate_proj.weight": "model-00013-of-00019.safetensors",
429
+ "model.layers.20.mlp.experts.1.up_proj.weight": "model-00013-of-00019.safetensors",
430
+ "model.layers.20.mlp.experts.2.down_proj.weight": "model-00013-of-00019.safetensors",
431
+ "model.layers.20.mlp.experts.2.gate_proj.weight": "model-00013-of-00019.safetensors",
432
+ "model.layers.20.mlp.experts.2.up_proj.weight": "model-00013-of-00019.safetensors",
433
+ "model.layers.20.mlp.experts.3.down_proj.weight": "model-00013-of-00019.safetensors",
434
+ "model.layers.20.mlp.experts.3.gate_proj.weight": "model-00013-of-00019.safetensors",
435
+ "model.layers.20.mlp.experts.3.up_proj.weight": "model-00013-of-00019.safetensors",
436
+ "model.layers.20.mlp.experts.4.down_proj.weight": "model-00013-of-00019.safetensors",
437
+ "model.layers.20.mlp.experts.4.gate_proj.weight": "model-00013-of-00019.safetensors",
438
+ "model.layers.20.mlp.experts.4.up_proj.weight": "model-00013-of-00019.safetensors",
439
+ "model.layers.20.mlp.experts.5.down_proj.weight": "model-00013-of-00019.safetensors",
440
+ "model.layers.20.mlp.experts.5.gate_proj.weight": "model-00013-of-00019.safetensors",
441
+ "model.layers.20.mlp.experts.5.up_proj.weight": "model-00013-of-00019.safetensors",
442
+ "model.layers.20.mlp.experts.6.down_proj.weight": "model-00013-of-00019.safetensors",
443
+ "model.layers.20.mlp.experts.6.gate_proj.weight": "model-00013-of-00019.safetensors",
444
+ "model.layers.20.mlp.experts.6.up_proj.weight": "model-00013-of-00019.safetensors",
445
+ "model.layers.20.mlp.experts.7.down_proj.weight": "model-00013-of-00019.safetensors",
446
+ "model.layers.20.mlp.experts.7.gate_proj.weight": "model-00013-of-00019.safetensors",
447
+ "model.layers.20.mlp.experts.7.up_proj.weight": "model-00013-of-00019.safetensors",
448
+ "model.layers.20.mlp.gate.weight": "model-00013-of-00019.safetensors",
449
+ "model.layers.20.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
450
+ "model.layers.20.self_attn.k_norm.weight": "model-00013-of-00019.safetensors",
451
+ "model.layers.20.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
452
+ "model.layers.20.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
453
+ "model.layers.20.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
454
+ "model.layers.20.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
455
+ "model.layers.21.input_layernorm.weight": "model-00014-of-00019.safetensors",
456
+ "model.layers.21.mlp.experts.0.down_proj.weight": "model-00013-of-00019.safetensors",
457
+ "model.layers.21.mlp.experts.0.gate_proj.weight": "model-00013-of-00019.safetensors",
458
+ "model.layers.21.mlp.experts.0.up_proj.weight": "model-00013-of-00019.safetensors",
459
+ "model.layers.21.mlp.experts.1.down_proj.weight": "model-00013-of-00019.safetensors",
460
+ "model.layers.21.mlp.experts.1.gate_proj.weight": "model-00013-of-00019.safetensors",
461
+ "model.layers.21.mlp.experts.1.up_proj.weight": "model-00013-of-00019.safetensors",
462
+ "model.layers.21.mlp.experts.2.down_proj.weight": "model-00013-of-00019.safetensors",
463
+ "model.layers.21.mlp.experts.2.gate_proj.weight": "model-00013-of-00019.safetensors",
464
+ "model.layers.21.mlp.experts.2.up_proj.weight": "model-00013-of-00019.safetensors",
465
+ "model.layers.21.mlp.experts.3.down_proj.weight": "model-00013-of-00019.safetensors",
466
+ "model.layers.21.mlp.experts.3.gate_proj.weight": "model-00013-of-00019.safetensors",
467
+ "model.layers.21.mlp.experts.3.up_proj.weight": "model-00013-of-00019.safetensors",
468
+ "model.layers.21.mlp.experts.4.down_proj.weight": "model-00013-of-00019.safetensors",
469
+ "model.layers.21.mlp.experts.4.gate_proj.weight": "model-00013-of-00019.safetensors",
470
+ "model.layers.21.mlp.experts.4.up_proj.weight": "model-00013-of-00019.safetensors",
471
+ "model.layers.21.mlp.experts.5.down_proj.weight": "model-00014-of-00019.safetensors",
472
+ "model.layers.21.mlp.experts.5.gate_proj.weight": "model-00013-of-00019.safetensors",
473
+ "model.layers.21.mlp.experts.5.up_proj.weight": "model-00014-of-00019.safetensors",
474
+ "model.layers.21.mlp.experts.6.down_proj.weight": "model-00014-of-00019.safetensors",
475
+ "model.layers.21.mlp.experts.6.gate_proj.weight": "model-00014-of-00019.safetensors",
476
+ "model.layers.21.mlp.experts.6.up_proj.weight": "model-00014-of-00019.safetensors",
477
+ "model.layers.21.mlp.experts.7.down_proj.weight": "model-00014-of-00019.safetensors",
478
+ "model.layers.21.mlp.experts.7.gate_proj.weight": "model-00014-of-00019.safetensors",
479
+ "model.layers.21.mlp.experts.7.up_proj.weight": "model-00014-of-00019.safetensors",
480
+ "model.layers.21.mlp.gate.weight": "model-00013-of-00019.safetensors",
481
+ "model.layers.21.post_attention_layernorm.weight": "model-00014-of-00019.safetensors",
482
+ "model.layers.21.self_attn.k_norm.weight": "model-00013-of-00019.safetensors",
483
+ "model.layers.21.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
484
+ "model.layers.21.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
485
+ "model.layers.21.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
486
+ "model.layers.21.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
487
+ "model.layers.22.input_layernorm.weight": "model-00014-of-00019.safetensors",
488
+ "model.layers.22.mlp.experts.0.down_proj.weight": "model-00014-of-00019.safetensors",
489
+ "model.layers.22.mlp.experts.0.gate_proj.weight": "model-00014-of-00019.safetensors",
490
+ "model.layers.22.mlp.experts.0.up_proj.weight": "model-00014-of-00019.safetensors",
491
+ "model.layers.22.mlp.experts.1.down_proj.weight": "model-00014-of-00019.safetensors",
492
+ "model.layers.22.mlp.experts.1.gate_proj.weight": "model-00014-of-00019.safetensors",
493
+ "model.layers.22.mlp.experts.1.up_proj.weight": "model-00014-of-00019.safetensors",
494
+ "model.layers.22.mlp.experts.2.down_proj.weight": "model-00014-of-00019.safetensors",
495
+ "model.layers.22.mlp.experts.2.gate_proj.weight": "model-00014-of-00019.safetensors",
496
+ "model.layers.22.mlp.experts.2.up_proj.weight": "model-00014-of-00019.safetensors",
497
+ "model.layers.22.mlp.experts.3.down_proj.weight": "model-00014-of-00019.safetensors",
498
+ "model.layers.22.mlp.experts.3.gate_proj.weight": "model-00014-of-00019.safetensors",
499
+ "model.layers.22.mlp.experts.3.up_proj.weight": "model-00014-of-00019.safetensors",
500
+ "model.layers.22.mlp.experts.4.down_proj.weight": "model-00014-of-00019.safetensors",
501
+ "model.layers.22.mlp.experts.4.gate_proj.weight": "model-00014-of-00019.safetensors",
502
+ "model.layers.22.mlp.experts.4.up_proj.weight": "model-00014-of-00019.safetensors",
503
+ "model.layers.22.mlp.experts.5.down_proj.weight": "model-00014-of-00019.safetensors",
504
+ "model.layers.22.mlp.experts.5.gate_proj.weight": "model-00014-of-00019.safetensors",
505
+ "model.layers.22.mlp.experts.5.up_proj.weight": "model-00014-of-00019.safetensors",
506
+ "model.layers.22.mlp.experts.6.down_proj.weight": "model-00014-of-00019.safetensors",
507
+ "model.layers.22.mlp.experts.6.gate_proj.weight": "model-00014-of-00019.safetensors",
508
+ "model.layers.22.mlp.experts.6.up_proj.weight": "model-00014-of-00019.safetensors",
509
+ "model.layers.22.mlp.experts.7.down_proj.weight": "model-00014-of-00019.safetensors",
510
+ "model.layers.22.mlp.experts.7.gate_proj.weight": "model-00014-of-00019.safetensors",
511
+ "model.layers.22.mlp.experts.7.up_proj.weight": "model-00014-of-00019.safetensors",
512
+ "model.layers.22.mlp.gate.weight": "model-00014-of-00019.safetensors",
513
+ "model.layers.22.post_attention_layernorm.weight": "model-00014-of-00019.safetensors",
514
+ "model.layers.22.self_attn.k_norm.weight": "model-00014-of-00019.safetensors",
515
+ "model.layers.22.self_attn.k_proj.weight": "model-00014-of-00019.safetensors",
516
+ "model.layers.22.self_attn.o_proj.weight": "model-00014-of-00019.safetensors",
517
+ "model.layers.22.self_attn.q_proj.weight": "model-00014-of-00019.safetensors",
518
+ "model.layers.22.self_attn.v_proj.weight": "model-00014-of-00019.safetensors",
519
+ "model.layers.23.input_layernorm.weight": "model-00015-of-00019.safetensors",
520
+ "model.layers.23.mlp.experts.0.down_proj.weight": "model-00014-of-00019.safetensors",
521
+ "model.layers.23.mlp.experts.0.gate_proj.weight": "model-00014-of-00019.safetensors",
522
+ "model.layers.23.mlp.experts.0.up_proj.weight": "model-00014-of-00019.safetensors",
523
+ "model.layers.23.mlp.experts.1.down_proj.weight": "model-00014-of-00019.safetensors",
524
+ "model.layers.23.mlp.experts.1.gate_proj.weight": "model-00014-of-00019.safetensors",
525
+ "model.layers.23.mlp.experts.1.up_proj.weight": "model-00014-of-00019.safetensors",
526
+ "model.layers.23.mlp.experts.2.down_proj.weight": "model-00014-of-00019.safetensors",
527
+ "model.layers.23.mlp.experts.2.gate_proj.weight": "model-00014-of-00019.safetensors",
528
+ "model.layers.23.mlp.experts.2.up_proj.weight": "model-00014-of-00019.safetensors",
529
+ "model.layers.23.mlp.experts.3.down_proj.weight": "model-00015-of-00019.safetensors",
530
+ "model.layers.23.mlp.experts.3.gate_proj.weight": "model-00015-of-00019.safetensors",
531
+ "model.layers.23.mlp.experts.3.up_proj.weight": "model-00015-of-00019.safetensors",
532
+ "model.layers.23.mlp.experts.4.down_proj.weight": "model-00015-of-00019.safetensors",
533
+ "model.layers.23.mlp.experts.4.gate_proj.weight": "model-00015-of-00019.safetensors",
534
+ "model.layers.23.mlp.experts.4.up_proj.weight": "model-00015-of-00019.safetensors",
535
+ "model.layers.23.mlp.experts.5.down_proj.weight": "model-00015-of-00019.safetensors",
536
+ "model.layers.23.mlp.experts.5.gate_proj.weight": "model-00015-of-00019.safetensors",
537
+ "model.layers.23.mlp.experts.5.up_proj.weight": "model-00015-of-00019.safetensors",
538
+ "model.layers.23.mlp.experts.6.down_proj.weight": "model-00015-of-00019.safetensors",
539
+ "model.layers.23.mlp.experts.6.gate_proj.weight": "model-00015-of-00019.safetensors",
540
+ "model.layers.23.mlp.experts.6.up_proj.weight": "model-00015-of-00019.safetensors",
541
+ "model.layers.23.mlp.experts.7.down_proj.weight": "model-00015-of-00019.safetensors",
542
+ "model.layers.23.mlp.experts.7.gate_proj.weight": "model-00015-of-00019.safetensors",
543
+ "model.layers.23.mlp.experts.7.up_proj.weight": "model-00015-of-00019.safetensors",
544
+ "model.layers.23.mlp.gate.weight": "model-00014-of-00019.safetensors",
545
+ "model.layers.23.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
546
+ "model.layers.23.self_attn.k_norm.weight": "model-00014-of-00019.safetensors",
547
+ "model.layers.23.self_attn.k_proj.weight": "model-00014-of-00019.safetensors",
548
+ "model.layers.23.self_attn.o_proj.weight": "model-00014-of-00019.safetensors",
549
+ "model.layers.23.self_attn.q_proj.weight": "model-00014-of-00019.safetensors",
550
+ "model.layers.23.self_attn.v_proj.weight": "model-00014-of-00019.safetensors",
551
+ "model.layers.24.input_layernorm.weight": "model-00015-of-00019.safetensors",
552
+ "model.layers.24.mlp.experts.0.down_proj.weight": "model-00015-of-00019.safetensors",
553
+ "model.layers.24.mlp.experts.0.gate_proj.weight": "model-00015-of-00019.safetensors",
554
+ "model.layers.24.mlp.experts.0.up_proj.weight": "model-00015-of-00019.safetensors",
555
+ "model.layers.24.mlp.experts.1.down_proj.weight": "model-00015-of-00019.safetensors",
556
+ "model.layers.24.mlp.experts.1.gate_proj.weight": "model-00015-of-00019.safetensors",
557
+ "model.layers.24.mlp.experts.1.up_proj.weight": "model-00015-of-00019.safetensors",
558
+ "model.layers.24.mlp.experts.2.down_proj.weight": "model-00015-of-00019.safetensors",
559
+ "model.layers.24.mlp.experts.2.gate_proj.weight": "model-00015-of-00019.safetensors",
560
+ "model.layers.24.mlp.experts.2.up_proj.weight": "model-00015-of-00019.safetensors",
561
+ "model.layers.24.mlp.experts.3.down_proj.weight": "model-00015-of-00019.safetensors",
562
+ "model.layers.24.mlp.experts.3.gate_proj.weight": "model-00015-of-00019.safetensors",
563
+ "model.layers.24.mlp.experts.3.up_proj.weight": "model-00015-of-00019.safetensors",
564
+ "model.layers.24.mlp.experts.4.down_proj.weight": "model-00015-of-00019.safetensors",
565
+ "model.layers.24.mlp.experts.4.gate_proj.weight": "model-00015-of-00019.safetensors",
566
+ "model.layers.24.mlp.experts.4.up_proj.weight": "model-00015-of-00019.safetensors",
567
+ "model.layers.24.mlp.experts.5.down_proj.weight": "model-00015-of-00019.safetensors",
568
+ "model.layers.24.mlp.experts.5.gate_proj.weight": "model-00015-of-00019.safetensors",
569
+ "model.layers.24.mlp.experts.5.up_proj.weight": "model-00015-of-00019.safetensors",
570
+ "model.layers.24.mlp.experts.6.down_proj.weight": "model-00015-of-00019.safetensors",
571
+ "model.layers.24.mlp.experts.6.gate_proj.weight": "model-00015-of-00019.safetensors",
572
+ "model.layers.24.mlp.experts.6.up_proj.weight": "model-00015-of-00019.safetensors",
573
+ "model.layers.24.mlp.experts.7.down_proj.weight": "model-00015-of-00019.safetensors",
574
+ "model.layers.24.mlp.experts.7.gate_proj.weight": "model-00015-of-00019.safetensors",
575
+ "model.layers.24.mlp.experts.7.up_proj.weight": "model-00015-of-00019.safetensors",
576
+ "model.layers.24.mlp.gate.weight": "model-00015-of-00019.safetensors",
577
+ "model.layers.24.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
578
+ "model.layers.24.self_attn.k_norm.weight": "model-00015-of-00019.safetensors",
579
+ "model.layers.24.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
580
+ "model.layers.24.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
581
+ "model.layers.24.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
582
+ "model.layers.24.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
583
+ "model.layers.25.input_layernorm.weight": "model-00016-of-00019.safetensors",
584
+ "model.layers.25.mlp.experts.0.down_proj.weight": "model-00016-of-00019.safetensors",
585
+ "model.layers.25.mlp.experts.0.gate_proj.weight": "model-00015-of-00019.safetensors",
586
+ "model.layers.25.mlp.experts.0.up_proj.weight": "model-00015-of-00019.safetensors",
587
+ "model.layers.25.mlp.experts.1.down_proj.weight": "model-00016-of-00019.safetensors",
588
+ "model.layers.25.mlp.experts.1.gate_proj.weight": "model-00016-of-00019.safetensors",
589
+ "model.layers.25.mlp.experts.1.up_proj.weight": "model-00016-of-00019.safetensors",
590
+ "model.layers.25.mlp.experts.2.down_proj.weight": "model-00016-of-00019.safetensors",
591
+ "model.layers.25.mlp.experts.2.gate_proj.weight": "model-00016-of-00019.safetensors",
592
+ "model.layers.25.mlp.experts.2.up_proj.weight": "model-00016-of-00019.safetensors",
593
+ "model.layers.25.mlp.experts.3.down_proj.weight": "model-00016-of-00019.safetensors",
594
+ "model.layers.25.mlp.experts.3.gate_proj.weight": "model-00016-of-00019.safetensors",
595
+ "model.layers.25.mlp.experts.3.up_proj.weight": "model-00016-of-00019.safetensors",
596
+ "model.layers.25.mlp.experts.4.down_proj.weight": "model-00016-of-00019.safetensors",
597
+ "model.layers.25.mlp.experts.4.gate_proj.weight": "model-00016-of-00019.safetensors",
598
+ "model.layers.25.mlp.experts.4.up_proj.weight": "model-00016-of-00019.safetensors",
599
+ "model.layers.25.mlp.experts.5.down_proj.weight": "model-00016-of-00019.safetensors",
600
+ "model.layers.25.mlp.experts.5.gate_proj.weight": "model-00016-of-00019.safetensors",
601
+ "model.layers.25.mlp.experts.5.up_proj.weight": "model-00016-of-00019.safetensors",
602
+ "model.layers.25.mlp.experts.6.down_proj.weight": "model-00016-of-00019.safetensors",
603
+ "model.layers.25.mlp.experts.6.gate_proj.weight": "model-00016-of-00019.safetensors",
604
+ "model.layers.25.mlp.experts.6.up_proj.weight": "model-00016-of-00019.safetensors",
605
+ "model.layers.25.mlp.experts.7.down_proj.weight": "model-00016-of-00019.safetensors",
606
+ "model.layers.25.mlp.experts.7.gate_proj.weight": "model-00016-of-00019.safetensors",
607
+ "model.layers.25.mlp.experts.7.up_proj.weight": "model-00016-of-00019.safetensors",
608
+ "model.layers.25.mlp.gate.weight": "model-00015-of-00019.safetensors",
609
+ "model.layers.25.post_attention_layernorm.weight": "model-00016-of-00019.safetensors",
610
+ "model.layers.25.self_attn.k_norm.weight": "model-00015-of-00019.safetensors",
611
+ "model.layers.25.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
612
+ "model.layers.25.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
613
+ "model.layers.25.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
614
+ "model.layers.25.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
615
+ "model.layers.26.input_layernorm.weight": "model-00017-of-00019.safetensors",
616
+ "model.layers.26.mlp.experts.0.down_proj.weight": "model-00016-of-00019.safetensors",
617
+ "model.layers.26.mlp.experts.0.gate_proj.weight": "model-00016-of-00019.safetensors",
618
+ "model.layers.26.mlp.experts.0.up_proj.weight": "model-00016-of-00019.safetensors",
619
+ "model.layers.26.mlp.experts.1.down_proj.weight": "model-00016-of-00019.safetensors",
620
+ "model.layers.26.mlp.experts.1.gate_proj.weight": "model-00016-of-00019.safetensors",
621
+ "model.layers.26.mlp.experts.1.up_proj.weight": "model-00016-of-00019.safetensors",
622
+ "model.layers.26.mlp.experts.2.down_proj.weight": "model-00016-of-00019.safetensors",
623
+ "model.layers.26.mlp.experts.2.gate_proj.weight": "model-00016-of-00019.safetensors",
624
+ "model.layers.26.mlp.experts.2.up_proj.weight": "model-00016-of-00019.safetensors",
625
+ "model.layers.26.mlp.experts.3.down_proj.weight": "model-00016-of-00019.safetensors",
626
+ "model.layers.26.mlp.experts.3.gate_proj.weight": "model-00016-of-00019.safetensors",
627
+ "model.layers.26.mlp.experts.3.up_proj.weight": "model-00016-of-00019.safetensors",
628
+ "model.layers.26.mlp.experts.4.down_proj.weight": "model-00016-of-00019.safetensors",
629
+ "model.layers.26.mlp.experts.4.gate_proj.weight": "model-00016-of-00019.safetensors",
630
+ "model.layers.26.mlp.experts.4.up_proj.weight": "model-00016-of-00019.safetensors",
631
+ "model.layers.26.mlp.experts.5.down_proj.weight": "model-00016-of-00019.safetensors",
632
+ "model.layers.26.mlp.experts.5.gate_proj.weight": "model-00016-of-00019.safetensors",
633
+ "model.layers.26.mlp.experts.5.up_proj.weight": "model-00016-of-00019.safetensors",
634
+ "model.layers.26.mlp.experts.6.down_proj.weight": "model-00017-of-00019.safetensors",
635
+ "model.layers.26.mlp.experts.6.gate_proj.weight": "model-00016-of-00019.safetensors",
636
+ "model.layers.26.mlp.experts.6.up_proj.weight": "model-00016-of-00019.safetensors",
637
+ "model.layers.26.mlp.experts.7.down_proj.weight": "model-00017-of-00019.safetensors",
638
+ "model.layers.26.mlp.experts.7.gate_proj.weight": "model-00017-of-00019.safetensors",
639
+ "model.layers.26.mlp.experts.7.up_proj.weight": "model-00017-of-00019.safetensors",
640
+ "model.layers.26.mlp.gate.weight": "model-00016-of-00019.safetensors",
641
+ "model.layers.26.post_attention_layernorm.weight": "model-00017-of-00019.safetensors",
642
+ "model.layers.26.self_attn.k_norm.weight": "model-00016-of-00019.safetensors",
643
+ "model.layers.26.self_attn.k_proj.weight": "model-00016-of-00019.safetensors",
644
+ "model.layers.26.self_attn.o_proj.weight": "model-00016-of-00019.safetensors",
645
+ "model.layers.26.self_attn.q_proj.weight": "model-00016-of-00019.safetensors",
646
+ "model.layers.26.self_attn.v_proj.weight": "model-00016-of-00019.safetensors",
647
+ "model.layers.27.input_layernorm.weight": "model-00017-of-00019.safetensors",
648
+ "model.layers.27.mlp.experts.0.down_proj.weight": "model-00017-of-00019.safetensors",
649
+ "model.layers.27.mlp.experts.0.gate_proj.weight": "model-00017-of-00019.safetensors",
650
+ "model.layers.27.mlp.experts.0.up_proj.weight": "model-00017-of-00019.safetensors",
651
+ "model.layers.27.mlp.experts.1.down_proj.weight": "model-00017-of-00019.safetensors",
652
+ "model.layers.27.mlp.experts.1.gate_proj.weight": "model-00017-of-00019.safetensors",
653
+ "model.layers.27.mlp.experts.1.up_proj.weight": "model-00017-of-00019.safetensors",
654
+ "model.layers.27.mlp.experts.2.down_proj.weight": "model-00017-of-00019.safetensors",
655
+ "model.layers.27.mlp.experts.2.gate_proj.weight": "model-00017-of-00019.safetensors",
656
+ "model.layers.27.mlp.experts.2.up_proj.weight": "model-00017-of-00019.safetensors",
657
+ "model.layers.27.mlp.experts.3.down_proj.weight": "model-00017-of-00019.safetensors",
658
+ "model.layers.27.mlp.experts.3.gate_proj.weight": "model-00017-of-00019.safetensors",
659
+ "model.layers.27.mlp.experts.3.up_proj.weight": "model-00017-of-00019.safetensors",
660
+ "model.layers.27.mlp.experts.4.down_proj.weight": "model-00017-of-00019.safetensors",
661
+ "model.layers.27.mlp.experts.4.gate_proj.weight": "model-00017-of-00019.safetensors",
662
+ "model.layers.27.mlp.experts.4.up_proj.weight": "model-00017-of-00019.safetensors",
663
+ "model.layers.27.mlp.experts.5.down_proj.weight": "model-00017-of-00019.safetensors",
664
+ "model.layers.27.mlp.experts.5.gate_proj.weight": "model-00017-of-00019.safetensors",
665
+ "model.layers.27.mlp.experts.5.up_proj.weight": "model-00017-of-00019.safetensors",
666
+ "model.layers.27.mlp.experts.6.down_proj.weight": "model-00017-of-00019.safetensors",
667
+ "model.layers.27.mlp.experts.6.gate_proj.weight": "model-00017-of-00019.safetensors",
668
+ "model.layers.27.mlp.experts.6.up_proj.weight": "model-00017-of-00019.safetensors",
669
+ "model.layers.27.mlp.experts.7.down_proj.weight": "model-00017-of-00019.safetensors",
670
+ "model.layers.27.mlp.experts.7.gate_proj.weight": "model-00017-of-00019.safetensors",
671
+ "model.layers.27.mlp.experts.7.up_proj.weight": "model-00017-of-00019.safetensors",
672
+ "model.layers.27.mlp.gate.weight": "model-00017-of-00019.safetensors",
673
+ "model.layers.27.post_attention_layernorm.weight": "model-00017-of-00019.safetensors",
674
+ "model.layers.27.self_attn.k_norm.weight": "model-00017-of-00019.safetensors",
675
+ "model.layers.27.self_attn.k_proj.weight": "model-00017-of-00019.safetensors",
676
+ "model.layers.27.self_attn.o_proj.weight": "model-00017-of-00019.safetensors",
677
+ "model.layers.27.self_attn.q_proj.weight": "model-00017-of-00019.safetensors",
678
+ "model.layers.27.self_attn.v_proj.weight": "model-00017-of-00019.safetensors",
679
+ "model.layers.28.input_layernorm.weight": "model-00018-of-00019.safetensors",
680
+ "model.layers.28.mlp.experts.0.down_proj.weight": "model-00017-of-00019.safetensors",
681
+ "model.layers.28.mlp.experts.0.gate_proj.weight": "model-00017-of-00019.safetensors",
682
+ "model.layers.28.mlp.experts.0.up_proj.weight": "model-00017-of-00019.safetensors",
683
+ "model.layers.28.mlp.experts.1.down_proj.weight": "model-00017-of-00019.safetensors",
684
+ "model.layers.28.mlp.experts.1.gate_proj.weight": "model-00017-of-00019.safetensors",
685
+ "model.layers.28.mlp.experts.1.up_proj.weight": "model-00017-of-00019.safetensors",
686
+ "model.layers.28.mlp.experts.2.down_proj.weight": "model-00017-of-00019.safetensors",
687
+ "model.layers.28.mlp.experts.2.gate_proj.weight": "model-00017-of-00019.safetensors",
688
+ "model.layers.28.mlp.experts.2.up_proj.weight": "model-00017-of-00019.safetensors",
689
+ "model.layers.28.mlp.experts.3.down_proj.weight": "model-00017-of-00019.safetensors",
690
+ "model.layers.28.mlp.experts.3.gate_proj.weight": "model-00017-of-00019.safetensors",
691
+ "model.layers.28.mlp.experts.3.up_proj.weight": "model-00017-of-00019.safetensors",
692
+ "model.layers.28.mlp.experts.4.down_proj.weight": "model-00018-of-00019.safetensors",
693
+ "model.layers.28.mlp.experts.4.gate_proj.weight": "model-00017-of-00019.safetensors",
694
+ "model.layers.28.mlp.experts.4.up_proj.weight": "model-00018-of-00019.safetensors",
695
+ "model.layers.28.mlp.experts.5.down_proj.weight": "model-00018-of-00019.safetensors",
696
+ "model.layers.28.mlp.experts.5.gate_proj.weight": "model-00018-of-00019.safetensors",
697
+ "model.layers.28.mlp.experts.5.up_proj.weight": "model-00018-of-00019.safetensors",
698
+ "model.layers.28.mlp.experts.6.down_proj.weight": "model-00018-of-00019.safetensors",
699
+ "model.layers.28.mlp.experts.6.gate_proj.weight": "model-00018-of-00019.safetensors",
700
+ "model.layers.28.mlp.experts.6.up_proj.weight": "model-00018-of-00019.safetensors",
701
+ "model.layers.28.mlp.experts.7.down_proj.weight": "model-00018-of-00019.safetensors",
702
+ "model.layers.28.mlp.experts.7.gate_proj.weight": "model-00018-of-00019.safetensors",
703
+ "model.layers.28.mlp.experts.7.up_proj.weight": "model-00018-of-00019.safetensors",
704
+ "model.layers.28.mlp.gate.weight": "model-00017-of-00019.safetensors",
705
+ "model.layers.28.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
706
+ "model.layers.28.self_attn.k_norm.weight": "model-00017-of-00019.safetensors",
707
+ "model.layers.28.self_attn.k_proj.weight": "model-00017-of-00019.safetensors",
708
+ "model.layers.28.self_attn.o_proj.weight": "model-00017-of-00019.safetensors",
709
+ "model.layers.28.self_attn.q_proj.weight": "model-00017-of-00019.safetensors",
710
+ "model.layers.28.self_attn.v_proj.weight": "model-00017-of-00019.safetensors",
711
+ "model.layers.29.input_layernorm.weight": "model-00018-of-00019.safetensors",
712
+ "model.layers.29.mlp.experts.0.down_proj.weight": "model-00018-of-00019.safetensors",
713
+ "model.layers.29.mlp.experts.0.gate_proj.weight": "model-00018-of-00019.safetensors",
714
+ "model.layers.29.mlp.experts.0.up_proj.weight": "model-00018-of-00019.safetensors",
715
+ "model.layers.29.mlp.experts.1.down_proj.weight": "model-00018-of-00019.safetensors",
716
+ "model.layers.29.mlp.experts.1.gate_proj.weight": "model-00018-of-00019.safetensors",
717
+ "model.layers.29.mlp.experts.1.up_proj.weight": "model-00018-of-00019.safetensors",
718
+ "model.layers.29.mlp.experts.2.down_proj.weight": "model-00018-of-00019.safetensors",
719
+ "model.layers.29.mlp.experts.2.gate_proj.weight": "model-00018-of-00019.safetensors",
720
+ "model.layers.29.mlp.experts.2.up_proj.weight": "model-00018-of-00019.safetensors",
721
+ "model.layers.29.mlp.experts.3.down_proj.weight": "model-00018-of-00019.safetensors",
722
+ "model.layers.29.mlp.experts.3.gate_proj.weight": "model-00018-of-00019.safetensors",
723
+ "model.layers.29.mlp.experts.3.up_proj.weight": "model-00018-of-00019.safetensors",
724
+ "model.layers.29.mlp.experts.4.down_proj.weight": "model-00018-of-00019.safetensors",
725
+ "model.layers.29.mlp.experts.4.gate_proj.weight": "model-00018-of-00019.safetensors",
726
+ "model.layers.29.mlp.experts.4.up_proj.weight": "model-00018-of-00019.safetensors",
727
+ "model.layers.29.mlp.experts.5.down_proj.weight": "model-00018-of-00019.safetensors",
728
+ "model.layers.29.mlp.experts.5.gate_proj.weight": "model-00018-of-00019.safetensors",
729
+ "model.layers.29.mlp.experts.5.up_proj.weight": "model-00018-of-00019.safetensors",
730
+ "model.layers.29.mlp.experts.6.down_proj.weight": "model-00018-of-00019.safetensors",
731
+ "model.layers.29.mlp.experts.6.gate_proj.weight": "model-00018-of-00019.safetensors",
732
+ "model.layers.29.mlp.experts.6.up_proj.weight": "model-00018-of-00019.safetensors",
733
+ "model.layers.29.mlp.experts.7.down_proj.weight": "model-00018-of-00019.safetensors",
734
+ "model.layers.29.mlp.experts.7.gate_proj.weight": "model-00018-of-00019.safetensors",
735
+ "model.layers.29.mlp.experts.7.up_proj.weight": "model-00018-of-00019.safetensors",
736
+ "model.layers.29.mlp.gate.weight": "model-00018-of-00019.safetensors",
737
+ "model.layers.29.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
738
+ "model.layers.29.self_attn.k_norm.weight": "model-00018-of-00019.safetensors",
739
+ "model.layers.29.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
740
+ "model.layers.29.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
741
+ "model.layers.29.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
742
+ "model.layers.29.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
743
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00019.safetensors",
744
+ "model.layers.3.mlp.experts.0.down_proj.weight": "model-00003-of-00019.safetensors",
745
+ "model.layers.3.mlp.experts.0.gate_proj.weight": "model-00003-of-00019.safetensors",
746
+ "model.layers.3.mlp.experts.0.up_proj.weight": "model-00003-of-00019.safetensors",
747
+ "model.layers.3.mlp.experts.1.down_proj.weight": "model-00003-of-00019.safetensors",
748
+ "model.layers.3.mlp.experts.1.gate_proj.weight": "model-00003-of-00019.safetensors",
749
+ "model.layers.3.mlp.experts.1.up_proj.weight": "model-00003-of-00019.safetensors",
750
+ "model.layers.3.mlp.experts.2.down_proj.weight": "model-00003-of-00019.safetensors",
751
+ "model.layers.3.mlp.experts.2.gate_proj.weight": "model-00003-of-00019.safetensors",
752
+ "model.layers.3.mlp.experts.2.up_proj.weight": "model-00003-of-00019.safetensors",
753
+ "model.layers.3.mlp.experts.3.down_proj.weight": "model-00003-of-00019.safetensors",
754
+ "model.layers.3.mlp.experts.3.gate_proj.weight": "model-00003-of-00019.safetensors",
755
+ "model.layers.3.mlp.experts.3.up_proj.weight": "model-00003-of-00019.safetensors",
756
+ "model.layers.3.mlp.experts.4.down_proj.weight": "model-00003-of-00019.safetensors",
757
+ "model.layers.3.mlp.experts.4.gate_proj.weight": "model-00003-of-00019.safetensors",
758
+ "model.layers.3.mlp.experts.4.up_proj.weight": "model-00003-of-00019.safetensors",
759
+ "model.layers.3.mlp.experts.5.down_proj.weight": "model-00003-of-00019.safetensors",
760
+ "model.layers.3.mlp.experts.5.gate_proj.weight": "model-00003-of-00019.safetensors",
761
+ "model.layers.3.mlp.experts.5.up_proj.weight": "model-00003-of-00019.safetensors",
762
+ "model.layers.3.mlp.experts.6.down_proj.weight": "model-00003-of-00019.safetensors",
763
+ "model.layers.3.mlp.experts.6.gate_proj.weight": "model-00003-of-00019.safetensors",
764
+ "model.layers.3.mlp.experts.6.up_proj.weight": "model-00003-of-00019.safetensors",
765
+ "model.layers.3.mlp.experts.7.down_proj.weight": "model-00003-of-00019.safetensors",
766
+ "model.layers.3.mlp.experts.7.gate_proj.weight": "model-00003-of-00019.safetensors",
767
+ "model.layers.3.mlp.experts.7.up_proj.weight": "model-00003-of-00019.safetensors",
768
+ "model.layers.3.mlp.gate.weight": "model-00003-of-00019.safetensors",
769
+ "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
770
+ "model.layers.3.self_attn.k_norm.weight": "model-00003-of-00019.safetensors",
771
+ "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
772
+ "model.layers.3.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
773
+ "model.layers.3.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
774
+ "model.layers.3.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
775
+ "model.layers.30.input_layernorm.weight": "model-00019-of-00019.safetensors",
776
+ "model.layers.30.mlp.experts.0.down_proj.weight": "model-00018-of-00019.safetensors",
777
+ "model.layers.30.mlp.experts.0.gate_proj.weight": "model-00018-of-00019.safetensors",
778
+ "model.layers.30.mlp.experts.0.up_proj.weight": "model-00018-of-00019.safetensors",
779
+ "model.layers.30.mlp.experts.1.down_proj.weight": "model-00018-of-00019.safetensors",
780
+ "model.layers.30.mlp.experts.1.gate_proj.weight": "model-00018-of-00019.safetensors",
781
+ "model.layers.30.mlp.experts.1.up_proj.weight": "model-00018-of-00019.safetensors",
782
+ "model.layers.30.mlp.experts.2.down_proj.weight": "model-00019-of-00019.safetensors",
783
+ "model.layers.30.mlp.experts.2.gate_proj.weight": "model-00019-of-00019.safetensors",
784
+ "model.layers.30.mlp.experts.2.up_proj.weight": "model-00019-of-00019.safetensors",
785
+ "model.layers.30.mlp.experts.3.down_proj.weight": "model-00019-of-00019.safetensors",
786
+ "model.layers.30.mlp.experts.3.gate_proj.weight": "model-00019-of-00019.safetensors",
787
+ "model.layers.30.mlp.experts.3.up_proj.weight": "model-00019-of-00019.safetensors",
788
+ "model.layers.30.mlp.experts.4.down_proj.weight": "model-00019-of-00019.safetensors",
789
+ "model.layers.30.mlp.experts.4.gate_proj.weight": "model-00019-of-00019.safetensors",
790
+ "model.layers.30.mlp.experts.4.up_proj.weight": "model-00019-of-00019.safetensors",
791
+ "model.layers.30.mlp.experts.5.down_proj.weight": "model-00019-of-00019.safetensors",
792
+ "model.layers.30.mlp.experts.5.gate_proj.weight": "model-00019-of-00019.safetensors",
793
+ "model.layers.30.mlp.experts.5.up_proj.weight": "model-00019-of-00019.safetensors",
794
+ "model.layers.30.mlp.experts.6.down_proj.weight": "model-00019-of-00019.safetensors",
795
+ "model.layers.30.mlp.experts.6.gate_proj.weight": "model-00019-of-00019.safetensors",
796
+ "model.layers.30.mlp.experts.6.up_proj.weight": "model-00019-of-00019.safetensors",
797
+ "model.layers.30.mlp.experts.7.down_proj.weight": "model-00019-of-00019.safetensors",
798
+ "model.layers.30.mlp.experts.7.gate_proj.weight": "model-00019-of-00019.safetensors",
799
+ "model.layers.30.mlp.experts.7.up_proj.weight": "model-00019-of-00019.safetensors",
800
+ "model.layers.30.mlp.gate.weight": "model-00018-of-00019.safetensors",
801
+ "model.layers.30.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
802
+ "model.layers.30.self_attn.k_norm.weight": "model-00018-of-00019.safetensors",
803
+ "model.layers.30.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
804
+ "model.layers.30.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
805
+ "model.layers.30.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
806
+ "model.layers.30.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
807
+ "model.layers.31.input_layernorm.weight": "model-00019-of-00019.safetensors",
808
+ "model.layers.31.mlp.experts.0.down_proj.weight": "model-00019-of-00019.safetensors",
809
+ "model.layers.31.mlp.experts.0.gate_proj.weight": "model-00019-of-00019.safetensors",
810
+ "model.layers.31.mlp.experts.0.up_proj.weight": "model-00019-of-00019.safetensors",
811
+ "model.layers.31.mlp.experts.1.down_proj.weight": "model-00019-of-00019.safetensors",
812
+ "model.layers.31.mlp.experts.1.gate_proj.weight": "model-00019-of-00019.safetensors",
813
+ "model.layers.31.mlp.experts.1.up_proj.weight": "model-00019-of-00019.safetensors",
814
+ "model.layers.31.mlp.experts.2.down_proj.weight": "model-00019-of-00019.safetensors",
815
+ "model.layers.31.mlp.experts.2.gate_proj.weight": "model-00019-of-00019.safetensors",
816
+ "model.layers.31.mlp.experts.2.up_proj.weight": "model-00019-of-00019.safetensors",
817
+ "model.layers.31.mlp.experts.3.down_proj.weight": "model-00019-of-00019.safetensors",
818
+ "model.layers.31.mlp.experts.3.gate_proj.weight": "model-00019-of-00019.safetensors",
819
+ "model.layers.31.mlp.experts.3.up_proj.weight": "model-00019-of-00019.safetensors",
820
+ "model.layers.31.mlp.experts.4.down_proj.weight": "model-00019-of-00019.safetensors",
821
+ "model.layers.31.mlp.experts.4.gate_proj.weight": "model-00019-of-00019.safetensors",
822
+ "model.layers.31.mlp.experts.4.up_proj.weight": "model-00019-of-00019.safetensors",
823
+ "model.layers.31.mlp.experts.5.down_proj.weight": "model-00019-of-00019.safetensors",
824
+ "model.layers.31.mlp.experts.5.gate_proj.weight": "model-00019-of-00019.safetensors",
825
+ "model.layers.31.mlp.experts.5.up_proj.weight": "model-00019-of-00019.safetensors",
826
+ "model.layers.31.mlp.experts.6.down_proj.weight": "model-00019-of-00019.safetensors",
827
+ "model.layers.31.mlp.experts.6.gate_proj.weight": "model-00019-of-00019.safetensors",
828
+ "model.layers.31.mlp.experts.6.up_proj.weight": "model-00019-of-00019.safetensors",
829
+ "model.layers.31.mlp.experts.7.down_proj.weight": "model-00019-of-00019.safetensors",
830
+ "model.layers.31.mlp.experts.7.gate_proj.weight": "model-00019-of-00019.safetensors",
831
+ "model.layers.31.mlp.experts.7.up_proj.weight": "model-00019-of-00019.safetensors",
832
+ "model.layers.31.mlp.gate.weight": "model-00019-of-00019.safetensors",
833
+ "model.layers.31.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
834
+ "model.layers.31.self_attn.k_norm.weight": "model-00019-of-00019.safetensors",
835
+ "model.layers.31.self_attn.k_proj.weight": "model-00019-of-00019.safetensors",
836
+ "model.layers.31.self_attn.o_proj.weight": "model-00019-of-00019.safetensors",
837
+ "model.layers.31.self_attn.q_proj.weight": "model-00019-of-00019.safetensors",
838
+ "model.layers.31.self_attn.v_proj.weight": "model-00019-of-00019.safetensors",
839
+ "model.layers.4.input_layernorm.weight": "model-00004-of-00019.safetensors",
840
+ "model.layers.4.mlp.experts.0.down_proj.weight": "model-00003-of-00019.safetensors",
841
+ "model.layers.4.mlp.experts.0.gate_proj.weight": "model-00003-of-00019.safetensors",
842
+ "model.layers.4.mlp.experts.0.up_proj.weight": "model-00003-of-00019.safetensors",
843
+ "model.layers.4.mlp.experts.1.down_proj.weight": "model-00003-of-00019.safetensors",
844
+ "model.layers.4.mlp.experts.1.gate_proj.weight": "model-00003-of-00019.safetensors",
845
+ "model.layers.4.mlp.experts.1.up_proj.weight": "model-00003-of-00019.safetensors",
846
+ "model.layers.4.mlp.experts.2.down_proj.weight": "model-00003-of-00019.safetensors",
847
+ "model.layers.4.mlp.experts.2.gate_proj.weight": "model-00003-of-00019.safetensors",
848
+ "model.layers.4.mlp.experts.2.up_proj.weight": "model-00003-of-00019.safetensors",
849
+ "model.layers.4.mlp.experts.3.down_proj.weight": "model-00004-of-00019.safetensors",
850
+ "model.layers.4.mlp.experts.3.gate_proj.weight": "model-00003-of-00019.safetensors",
851
+ "model.layers.4.mlp.experts.3.up_proj.weight": "model-00003-of-00019.safetensors",
852
+ "model.layers.4.mlp.experts.4.down_proj.weight": "model-00004-of-00019.safetensors",
853
+ "model.layers.4.mlp.experts.4.gate_proj.weight": "model-00004-of-00019.safetensors",
854
+ "model.layers.4.mlp.experts.4.up_proj.weight": "model-00004-of-00019.safetensors",
855
+ "model.layers.4.mlp.experts.5.down_proj.weight": "model-00004-of-00019.safetensors",
856
+ "model.layers.4.mlp.experts.5.gate_proj.weight": "model-00004-of-00019.safetensors",
857
+ "model.layers.4.mlp.experts.5.up_proj.weight": "model-00004-of-00019.safetensors",
858
+ "model.layers.4.mlp.experts.6.down_proj.weight": "model-00004-of-00019.safetensors",
859
+ "model.layers.4.mlp.experts.6.gate_proj.weight": "model-00004-of-00019.safetensors",
860
+ "model.layers.4.mlp.experts.6.up_proj.weight": "model-00004-of-00019.safetensors",
861
+ "model.layers.4.mlp.experts.7.down_proj.weight": "model-00004-of-00019.safetensors",
862
+ "model.layers.4.mlp.experts.7.gate_proj.weight": "model-00004-of-00019.safetensors",
863
+ "model.layers.4.mlp.experts.7.up_proj.weight": "model-00004-of-00019.safetensors",
864
+ "model.layers.4.mlp.gate.weight": "model-00003-of-00019.safetensors",
865
+ "model.layers.4.post_attention_layernorm.weight": "model-00004-of-00019.safetensors",
866
+ "model.layers.4.self_attn.k_norm.weight": "model-00003-of-00019.safetensors",
867
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
868
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
869
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
870
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
871
+ "model.layers.5.input_layernorm.weight": "model-00004-of-00019.safetensors",
872
+ "model.layers.5.mlp.experts.0.down_proj.weight": "model-00004-of-00019.safetensors",
873
+ "model.layers.5.mlp.experts.0.gate_proj.weight": "model-00004-of-00019.safetensors",
874
+ "model.layers.5.mlp.experts.0.up_proj.weight": "model-00004-of-00019.safetensors",
875
+ "model.layers.5.mlp.experts.1.down_proj.weight": "model-00004-of-00019.safetensors",
876
+ "model.layers.5.mlp.experts.1.gate_proj.weight": "model-00004-of-00019.safetensors",
877
+ "model.layers.5.mlp.experts.1.up_proj.weight": "model-00004-of-00019.safetensors",
878
+ "model.layers.5.mlp.experts.2.down_proj.weight": "model-00004-of-00019.safetensors",
879
+ "model.layers.5.mlp.experts.2.gate_proj.weight": "model-00004-of-00019.safetensors",
880
+ "model.layers.5.mlp.experts.2.up_proj.weight": "model-00004-of-00019.safetensors",
881
+ "model.layers.5.mlp.experts.3.down_proj.weight": "model-00004-of-00019.safetensors",
882
+ "model.layers.5.mlp.experts.3.gate_proj.weight": "model-00004-of-00019.safetensors",
883
+ "model.layers.5.mlp.experts.3.up_proj.weight": "model-00004-of-00019.safetensors",
884
+ "model.layers.5.mlp.experts.4.down_proj.weight": "model-00004-of-00019.safetensors",
885
+ "model.layers.5.mlp.experts.4.gate_proj.weight": "model-00004-of-00019.safetensors",
886
+ "model.layers.5.mlp.experts.4.up_proj.weight": "model-00004-of-00019.safetensors",
887
+ "model.layers.5.mlp.experts.5.down_proj.weight": "model-00004-of-00019.safetensors",
888
+ "model.layers.5.mlp.experts.5.gate_proj.weight": "model-00004-of-00019.safetensors",
889
+ "model.layers.5.mlp.experts.5.up_proj.weight": "model-00004-of-00019.safetensors",
890
+ "model.layers.5.mlp.experts.6.down_proj.weight": "model-00004-of-00019.safetensors",
891
+ "model.layers.5.mlp.experts.6.gate_proj.weight": "model-00004-of-00019.safetensors",
892
+ "model.layers.5.mlp.experts.6.up_proj.weight": "model-00004-of-00019.safetensors",
893
+ "model.layers.5.mlp.experts.7.down_proj.weight": "model-00004-of-00019.safetensors",
894
+ "model.layers.5.mlp.experts.7.gate_proj.weight": "model-00004-of-00019.safetensors",
895
+ "model.layers.5.mlp.experts.7.up_proj.weight": "model-00004-of-00019.safetensors",
896
+ "model.layers.5.mlp.gate.weight": "model-00004-of-00019.safetensors",
897
+ "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00019.safetensors",
898
+ "model.layers.5.self_attn.k_norm.weight": "model-00004-of-00019.safetensors",
899
+ "model.layers.5.self_attn.k_proj.weight": "model-00004-of-00019.safetensors",
900
+ "model.layers.5.self_attn.o_proj.weight": "model-00004-of-00019.safetensors",
901
+ "model.layers.5.self_attn.q_proj.weight": "model-00004-of-00019.safetensors",
902
+ "model.layers.5.self_attn.v_proj.weight": "model-00004-of-00019.safetensors",
903
+ "model.layers.6.input_layernorm.weight": "model-00005-of-00019.safetensors",
904
+ "model.layers.6.mlp.experts.0.down_proj.weight": "model-00004-of-00019.safetensors",
905
+ "model.layers.6.mlp.experts.0.gate_proj.weight": "model-00004-of-00019.safetensors",
906
+ "model.layers.6.mlp.experts.0.up_proj.weight": "model-00004-of-00019.safetensors",
907
+ "model.layers.6.mlp.experts.1.down_proj.weight": "model-00005-of-00019.safetensors",
908
+ "model.layers.6.mlp.experts.1.gate_proj.weight": "model-00004-of-00019.safetensors",
909
+ "model.layers.6.mlp.experts.1.up_proj.weight": "model-00005-of-00019.safetensors",
910
+ "model.layers.6.mlp.experts.2.down_proj.weight": "model-00005-of-00019.safetensors",
911
+ "model.layers.6.mlp.experts.2.gate_proj.weight": "model-00005-of-00019.safetensors",
912
+ "model.layers.6.mlp.experts.2.up_proj.weight": "model-00005-of-00019.safetensors",
913
+ "model.layers.6.mlp.experts.3.down_proj.weight": "model-00005-of-00019.safetensors",
914
+ "model.layers.6.mlp.experts.3.gate_proj.weight": "model-00005-of-00019.safetensors",
915
+ "model.layers.6.mlp.experts.3.up_proj.weight": "model-00005-of-00019.safetensors",
916
+ "model.layers.6.mlp.experts.4.down_proj.weight": "model-00005-of-00019.safetensors",
917
+ "model.layers.6.mlp.experts.4.gate_proj.weight": "model-00005-of-00019.safetensors",
918
+ "model.layers.6.mlp.experts.4.up_proj.weight": "model-00005-of-00019.safetensors",
919
+ "model.layers.6.mlp.experts.5.down_proj.weight": "model-00005-of-00019.safetensors",
920
+ "model.layers.6.mlp.experts.5.gate_proj.weight": "model-00005-of-00019.safetensors",
921
+ "model.layers.6.mlp.experts.5.up_proj.weight": "model-00005-of-00019.safetensors",
922
+ "model.layers.6.mlp.experts.6.down_proj.weight": "model-00005-of-00019.safetensors",
923
+ "model.layers.6.mlp.experts.6.gate_proj.weight": "model-00005-of-00019.safetensors",
924
+ "model.layers.6.mlp.experts.6.up_proj.weight": "model-00005-of-00019.safetensors",
925
+ "model.layers.6.mlp.experts.7.down_proj.weight": "model-00005-of-00019.safetensors",
926
+ "model.layers.6.mlp.experts.7.gate_proj.weight": "model-00005-of-00019.safetensors",
927
+ "model.layers.6.mlp.experts.7.up_proj.weight": "model-00005-of-00019.safetensors",
928
+ "model.layers.6.mlp.gate.weight": "model-00004-of-00019.safetensors",
929
+ "model.layers.6.post_attention_layernorm.weight": "model-00005-of-00019.safetensors",
930
+ "model.layers.6.self_attn.k_norm.weight": "model-00004-of-00019.safetensors",
931
+ "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00019.safetensors",
932
+ "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00019.safetensors",
933
+ "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00019.safetensors",
934
+ "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00019.safetensors",
935
+ "model.layers.7.input_layernorm.weight": "model-00006-of-00019.safetensors",
936
+ "model.layers.7.mlp.experts.0.down_proj.weight": "model-00005-of-00019.safetensors",
937
+ "model.layers.7.mlp.experts.0.gate_proj.weight": "model-00005-of-00019.safetensors",
938
+ "model.layers.7.mlp.experts.0.up_proj.weight": "model-00005-of-00019.safetensors",
939
+ "model.layers.7.mlp.experts.1.down_proj.weight": "model-00005-of-00019.safetensors",
940
+ "model.layers.7.mlp.experts.1.gate_proj.weight": "model-00005-of-00019.safetensors",
941
+ "model.layers.7.mlp.experts.1.up_proj.weight": "model-00005-of-00019.safetensors",
942
+ "model.layers.7.mlp.experts.2.down_proj.weight": "model-00005-of-00019.safetensors",
943
+ "model.layers.7.mlp.experts.2.gate_proj.weight": "model-00005-of-00019.safetensors",
944
+ "model.layers.7.mlp.experts.2.up_proj.weight": "model-00005-of-00019.safetensors",
945
+ "model.layers.7.mlp.experts.3.down_proj.weight": "model-00005-of-00019.safetensors",
946
+ "model.layers.7.mlp.experts.3.gate_proj.weight": "model-00005-of-00019.safetensors",
947
+ "model.layers.7.mlp.experts.3.up_proj.weight": "model-00005-of-00019.safetensors",
948
+ "model.layers.7.mlp.experts.4.down_proj.weight": "model-00005-of-00019.safetensors",
949
+ "model.layers.7.mlp.experts.4.gate_proj.weight": "model-00005-of-00019.safetensors",
950
+ "model.layers.7.mlp.experts.4.up_proj.weight": "model-00005-of-00019.safetensors",
951
+ "model.layers.7.mlp.experts.5.down_proj.weight": "model-00005-of-00019.safetensors",
952
+ "model.layers.7.mlp.experts.5.gate_proj.weight": "model-00005-of-00019.safetensors",
953
+ "model.layers.7.mlp.experts.5.up_proj.weight": "model-00005-of-00019.safetensors",
954
+ "model.layers.7.mlp.experts.6.down_proj.weight": "model-00005-of-00019.safetensors",
955
+ "model.layers.7.mlp.experts.6.gate_proj.weight": "model-00005-of-00019.safetensors",
956
+ "model.layers.7.mlp.experts.6.up_proj.weight": "model-00005-of-00019.safetensors",
957
+ "model.layers.7.mlp.experts.7.down_proj.weight": "model-00006-of-00019.safetensors",
958
+ "model.layers.7.mlp.experts.7.gate_proj.weight": "model-00005-of-00019.safetensors",
959
+ "model.layers.7.mlp.experts.7.up_proj.weight": "model-00006-of-00019.safetensors",
960
+ "model.layers.7.mlp.gate.weight": "model-00005-of-00019.safetensors",
961
+ "model.layers.7.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
962
+ "model.layers.7.self_attn.k_norm.weight": "model-00005-of-00019.safetensors",
963
+ "model.layers.7.self_attn.k_proj.weight": "model-00005-of-00019.safetensors",
964
+ "model.layers.7.self_attn.o_proj.weight": "model-00005-of-00019.safetensors",
965
+ "model.layers.7.self_attn.q_proj.weight": "model-00005-of-00019.safetensors",
966
+ "model.layers.7.self_attn.v_proj.weight": "model-00005-of-00019.safetensors",
967
+ "model.layers.8.input_layernorm.weight": "model-00006-of-00019.safetensors",
968
+ "model.layers.8.mlp.experts.0.down_proj.weight": "model-00006-of-00019.safetensors",
969
+ "model.layers.8.mlp.experts.0.gate_proj.weight": "model-00006-of-00019.safetensors",
970
+ "model.layers.8.mlp.experts.0.up_proj.weight": "model-00006-of-00019.safetensors",
971
+ "model.layers.8.mlp.experts.1.down_proj.weight": "model-00006-of-00019.safetensors",
972
+ "model.layers.8.mlp.experts.1.gate_proj.weight": "model-00006-of-00019.safetensors",
973
+ "model.layers.8.mlp.experts.1.up_proj.weight": "model-00006-of-00019.safetensors",
974
+ "model.layers.8.mlp.experts.2.down_proj.weight": "model-00006-of-00019.safetensors",
975
+ "model.layers.8.mlp.experts.2.gate_proj.weight": "model-00006-of-00019.safetensors",
976
+ "model.layers.8.mlp.experts.2.up_proj.weight": "model-00006-of-00019.safetensors",
977
+ "model.layers.8.mlp.experts.3.down_proj.weight": "model-00006-of-00019.safetensors",
978
+ "model.layers.8.mlp.experts.3.gate_proj.weight": "model-00006-of-00019.safetensors",
979
+ "model.layers.8.mlp.experts.3.up_proj.weight": "model-00006-of-00019.safetensors",
980
+ "model.layers.8.mlp.experts.4.down_proj.weight": "model-00006-of-00019.safetensors",
981
+ "model.layers.8.mlp.experts.4.gate_proj.weight": "model-00006-of-00019.safetensors",
982
+ "model.layers.8.mlp.experts.4.up_proj.weight": "model-00006-of-00019.safetensors",
983
+ "model.layers.8.mlp.experts.5.down_proj.weight": "model-00006-of-00019.safetensors",
984
+ "model.layers.8.mlp.experts.5.gate_proj.weight": "model-00006-of-00019.safetensors",
985
+ "model.layers.8.mlp.experts.5.up_proj.weight": "model-00006-of-00019.safetensors",
986
+ "model.layers.8.mlp.experts.6.down_proj.weight": "model-00006-of-00019.safetensors",
987
+ "model.layers.8.mlp.experts.6.gate_proj.weight": "model-00006-of-00019.safetensors",
988
+ "model.layers.8.mlp.experts.6.up_proj.weight": "model-00006-of-00019.safetensors",
989
+ "model.layers.8.mlp.experts.7.down_proj.weight": "model-00006-of-00019.safetensors",
990
+ "model.layers.8.mlp.experts.7.gate_proj.weight": "model-00006-of-00019.safetensors",
991
+ "model.layers.8.mlp.experts.7.up_proj.weight": "model-00006-of-00019.safetensors",
992
+ "model.layers.8.mlp.gate.weight": "model-00006-of-00019.safetensors",
993
+ "model.layers.8.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
994
+ "model.layers.8.self_attn.k_norm.weight": "model-00006-of-00019.safetensors",
995
+ "model.layers.8.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
996
+ "model.layers.8.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
997
+ "model.layers.8.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
998
+ "model.layers.8.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
999
+ "model.layers.9.input_layernorm.weight": "model-00007-of-00019.safetensors",
1000
+ "model.layers.9.mlp.experts.0.down_proj.weight": "model-00006-of-00019.safetensors",
1001
+ "model.layers.9.mlp.experts.0.gate_proj.weight": "model-00006-of-00019.safetensors",
1002
+ "model.layers.9.mlp.experts.0.up_proj.weight": "model-00006-of-00019.safetensors",
1003
+ "model.layers.9.mlp.experts.1.down_proj.weight": "model-00006-of-00019.safetensors",
1004
+ "model.layers.9.mlp.experts.1.gate_proj.weight": "model-00006-of-00019.safetensors",
1005
+ "model.layers.9.mlp.experts.1.up_proj.weight": "model-00006-of-00019.safetensors",
1006
+ "model.layers.9.mlp.experts.2.down_proj.weight": "model-00006-of-00019.safetensors",
1007
+ "model.layers.9.mlp.experts.2.gate_proj.weight": "model-00006-of-00019.safetensors",
1008
+ "model.layers.9.mlp.experts.2.up_proj.weight": "model-00006-of-00019.safetensors",
1009
+ "model.layers.9.mlp.experts.3.down_proj.weight": "model-00006-of-00019.safetensors",
1010
+ "model.layers.9.mlp.experts.3.gate_proj.weight": "model-00006-of-00019.safetensors",
1011
+ "model.layers.9.mlp.experts.3.up_proj.weight": "model-00006-of-00019.safetensors",
1012
+ "model.layers.9.mlp.experts.4.down_proj.weight": "model-00006-of-00019.safetensors",
1013
+ "model.layers.9.mlp.experts.4.gate_proj.weight": "model-00006-of-00019.safetensors",
1014
+ "model.layers.9.mlp.experts.4.up_proj.weight": "model-00006-of-00019.safetensors",
1015
+ "model.layers.9.mlp.experts.5.down_proj.weight": "model-00007-of-00019.safetensors",
1016
+ "model.layers.9.mlp.experts.5.gate_proj.weight": "model-00007-of-00019.safetensors",
1017
+ "model.layers.9.mlp.experts.5.up_proj.weight": "model-00007-of-00019.safetensors",
1018
+ "model.layers.9.mlp.experts.6.down_proj.weight": "model-00007-of-00019.safetensors",
1019
+ "model.layers.9.mlp.experts.6.gate_proj.weight": "model-00007-of-00019.safetensors",
1020
+ "model.layers.9.mlp.experts.6.up_proj.weight": "model-00007-of-00019.safetensors",
1021
+ "model.layers.9.mlp.experts.7.down_proj.weight": "model-00007-of-00019.safetensors",
1022
+ "model.layers.9.mlp.experts.7.gate_proj.weight": "model-00007-of-00019.safetensors",
1023
+ "model.layers.9.mlp.experts.7.up_proj.weight": "model-00007-of-00019.safetensors",
1024
+ "model.layers.9.mlp.gate.weight": "model-00006-of-00019.safetensors",
1025
+ "model.layers.9.post_attention_layernorm.weight": "model-00007-of-00019.safetensors",
1026
+ "model.layers.9.self_attn.k_norm.weight": "model-00006-of-00019.safetensors",
1027
+ "model.layers.9.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
1028
+ "model.layers.9.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
1029
+ "model.layers.9.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
1030
+ "model.layers.9.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
1031
+ "model.norm.bias": "model-00019-of-00019.safetensors",
1032
+ "model.norm.weight": "model-00019-of-00019.safetensors"
1033
+ }
1034
+ }
modeling_tcmoe.py ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The HuggingFace Inc. team. All rights reserved.
2
+ # Copyright (c) Shen Yan. All rights reserved.
3
+ # This code is built upon Huggingface's transformers repository.
4
+
5
+ import math
6
+ from typing import Optional, Tuple, Union
7
+ from transformers import PreTrainedModel
8
+ import torch
9
+ import torch.nn as nn
10
+ from transformers.utils import logging
11
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
12
+ from torch.nn import CrossEntropyLoss
13
+ from configuration_tcmoe import TCMoEConfig
14
+
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
20
+ def _make_causal_mask(
21
+ input_ids_shape: torch.Size,
22
+ dtype: torch.dtype,
23
+ device: torch.device,
24
+ past_key_values_length: int = 0,
25
+ ):
26
+ """Make causal mask used for bi-directional self-attention."""
27
+ batch_size, tgt_len = input_ids_shape
28
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
29
+ mask_cond = torch.arange(mask.size(-1), device=device)
30
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
31
+ mask = mask.to(dtype)
32
+ if past_key_values_length > 0:
33
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
34
+ return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
35
+
36
+
37
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
38
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
39
+ """Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
40
+ batch_size, src_len = mask.size()
41
+ tgt_len = tgt_len if tgt_len is not None else src_len
42
+
43
+ expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
44
+ inverted_mask = 1.0 - expanded_mask
45
+
46
+ return inverted_mask.masked_fill(
47
+ inverted_mask.to(torch.bool), torch.finfo(dtype).min
48
+ )
49
+
50
+
51
+ class RotaryEmbedding(nn.Module):
52
+ def __init__(
53
+ self,
54
+ dim: int,
55
+ max_position_embeddings: int,
56
+ base: int = 10_000,
57
+ device: Optional[torch.device] = None,
58
+ ):
59
+ super().__init__()
60
+
61
+ self.dim = dim
62
+ self.max_position_embeddings = max_position_embeddings
63
+ self.base = base
64
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
65
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
66
+
67
+ # Build here to make `torch.jit.trace` work.
68
+ self._set_cos_sin_cache(
69
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
70
+ )
71
+
72
+ def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
73
+ self.max_seq_len_cached = seq_len
74
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
75
+
76
+ # Don't do einsum, it converts fp32 to fp16 under AMP
77
+ # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
78
+ freqs = torch.outer(t, self.inv_freq)
79
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
80
+ emb = torch.cat((freqs, freqs), dim=-1)
81
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
82
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
83
+
84
+ def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
85
+ # x: [batch_size, num_heads, seq_len, head_size]
86
+ if seq_len > self.max_seq_len_cached:
87
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
88
+ return (
89
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
90
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
91
+ )
92
+
93
+
94
+ def rotate_half(x: torch.Tensor):
95
+ """Rotates half the hidden dims of the input."""
96
+ x1, x2 = torch.chunk(x, 2, dim=-1)
97
+ return torch.cat((-x2, x1), dim=-1)
98
+
99
+
100
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
101
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
102
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
103
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
104
+ cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
105
+ sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
106
+ q_embed = (q * cos) + (rotate_half(q) * sin)
107
+ k_embed = (k * cos) + (rotate_half(k) * sin)
108
+ return q_embed, k_embed
109
+
110
+
111
+ class RMSNorm(nn.Module):
112
+ def __init__(self, hidden_size, eps=1e-6):
113
+ """
114
+ RMSNorm is equivalent to T5LayerNorm
115
+ """
116
+ super().__init__()
117
+ self.weight = nn.Parameter(torch.ones(hidden_size))
118
+ self.variance_epsilon = eps
119
+
120
+ def forward(self, hidden_states):
121
+ input_dtype = hidden_states.dtype
122
+ hidden_states = hidden_states.to(torch.float32)
123
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
124
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
125
+ return self.weight * hidden_states.to(input_dtype)
126
+
127
+ def extra_repr(self):
128
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
129
+
130
+
131
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
132
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
133
+ """
134
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
135
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
136
+ """
137
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
138
+ if n_rep == 1:
139
+ return hidden_states
140
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
141
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
142
+
143
+
144
+ class Attention(nn.Module):
145
+ def __init__(self, config: TCMoEConfig):
146
+ super().__init__()
147
+ self.config = config
148
+ self.hidden_size = config.hidden_size
149
+ self.num_heads = config.num_attention_heads
150
+ self.head_dim = self.hidden_size // self.num_heads
151
+ self.num_key_value_heads = config.num_key_value_heads
152
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
153
+ self.max_position_embeddings = config.max_position_embeddings
154
+
155
+ if (self.head_dim * self.num_heads) != self.hidden_size:
156
+ raise ValueError(
157
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
158
+ f" and `num_heads`: {self.num_heads})."
159
+ )
160
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
161
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
162
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
163
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
164
+ self.k_norm = RMSNorm(
165
+ (self.hidden_size // self.num_heads), eps=config.norm_eps
166
+ )
167
+
168
+ self._init_rope()
169
+
170
+ def _init_rope(self):
171
+ self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
172
+ self.rotary_emb = RotaryEmbedding(
173
+ self.rotary_ndims,
174
+ max_position_embeddings=self.config.max_position_embeddings,
175
+ base=self.config.rope_theta,
176
+ )
177
+
178
+ def forward(
179
+ self,
180
+ hidden_states: torch.FloatTensor,
181
+ attention_mask: torch.FloatTensor,
182
+ position_ids: torch.LongTensor,
183
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
184
+ output_attentions: Optional[bool] = False,
185
+ use_cache: Optional[bool] = False,
186
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
187
+ bsz, q_len, _ = hidden_states.size()
188
+
189
+ query_states = self.q_proj(hidden_states)
190
+ key_states = self.k_proj(hidden_states)
191
+ value_states = self.v_proj(hidden_states)
192
+
193
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
194
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
195
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
196
+
197
+ query_rot = query_states[..., : self.rotary_ndims]
198
+ query_pass = query_states[..., self.rotary_ndims :]
199
+ key_rot = key_states[..., : self.rotary_ndims]
200
+ key_pass = key_states[..., self.rotary_ndims :]
201
+
202
+ kv_seq_len = key_states.shape[-2]
203
+ if past_key_value is not None:
204
+ kv_seq_len += past_key_value[0].shape[-2]
205
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
206
+ query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
207
+
208
+ key_states = self.k_norm(key_states)
209
+
210
+ # [batch_size, num_heads, seq_len, head_dim]
211
+ query_states = torch.cat((query_states, query_pass), dim=-1)
212
+ key_states = torch.cat((key_states, key_pass), dim=-1)
213
+
214
+ if past_key_value is not None:
215
+ # Reuse k, v, self_attention
216
+ key_states = torch.cat((past_key_value[0], key_states), dim=2)
217
+ value_states = torch.cat((past_key_value[1], value_states), dim=2)
218
+
219
+ past_key_value = (key_states, value_states) if use_cache else None
220
+
221
+ # Repeat k/v heads if n_kv_heads < n_heads
222
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
223
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
224
+
225
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
226
+
227
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
228
+ raise ValueError(
229
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
230
+ f" {attn_weights.size()}"
231
+ )
232
+
233
+ if attention_mask is not None:
234
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
235
+ raise ValueError(
236
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
237
+ )
238
+ attn_weights = attn_weights + attention_mask
239
+
240
+ # Upcast attention to fp32
241
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
242
+ attn_output = torch.matmul(attn_weights, value_states)
243
+
244
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
245
+ raise ValueError(
246
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
247
+ f" {attn_output.size()}"
248
+ )
249
+
250
+ # Merge heads
251
+ attn_output = attn_output.transpose(1, 2).contiguous()
252
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
253
+
254
+ # Final linear projection
255
+ attn_output = self.o_proj(attn_output)
256
+
257
+ if not output_attentions:
258
+ attn_weights = None
259
+
260
+ return attn_output, attn_weights, past_key_value
261
+
262
+
263
+ class MLP(nn.Module):
264
+ def __init__(self, config: TCMoEConfig):
265
+ super().__init__()
266
+ self.config = config
267
+ self.hidden_size = config.hidden_size
268
+ self.intermediate_size = config.intermediate_size
269
+ self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
270
+ self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
271
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
272
+ self.act_fn = nn.SiLU()
273
+
274
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
275
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
276
+
277
+
278
+ class TCMoEBlock(nn.Module):
279
+ def __init__(self, config):
280
+ super().__init__()
281
+ self.num_experts = config.num_experts
282
+ self.top_k = config.moe_topk
283
+ self.num_null_experts = config.num_null_experts
284
+ self.gate = nn.Linear(config.hidden_size, self.num_experts * 2 + self.num_null_experts, bias=False)
285
+ self.experts = nn.ModuleList([MLP(config) for _ in range(self.num_experts)])
286
+
287
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
288
+ self.gate.float()
289
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
290
+ hidden_states = hidden_states.view(-1, hidden_dim)
291
+
292
+ logits = self.gate(hidden_states.float())
293
+
294
+ # Add bias to the null experts and negative experts
295
+ logits[:, self.num_experts * 2:] = logits[:, self.num_experts * 2:] - 10.0
296
+ logits[:, self.num_experts:self.num_experts * 2] = logits[:, self.num_experts:self.num_experts * 2] - 1.0
297
+
298
+ gates = torch.nn.functional.softmax(logits, dim=1)
299
+
300
+ # Select Top-k experts
301
+ weights, selected_experts = torch.topk(gates, k=self.top_k, dim=-1, sorted=False)
302
+
303
+ # Calculate the weight sum for the activated non-null experts
304
+ weights_from_non_null_experts = weights * (selected_experts < 2 * self.num_experts).float()
305
+ weightsum_from_non_null_experts = weights_from_non_null_experts.sum(1, keepdim=True)
306
+
307
+ # Calculate the weight sum for all null experts (since all null experts are activated)
308
+ weightsum_from_null_experts = gates[:, 2 * self.num_experts:].sum(1, keepdim=True)
309
+
310
+ # Normalize the weights of all activated experts
311
+ weightsum = weightsum_from_non_null_experts + weightsum_from_null_experts
312
+ gates = gates / weightsum
313
+ weights = torch.gather(gates, 1, selected_experts)
314
+ weights = weights.to(hidden_states.dtype)
315
+
316
+ final_hidden_states = torch.zeros(
317
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
318
+ )
319
+
320
+ # One hot encode the selected experts to create an expert mask
321
+ # this will be used to easily index which expert is going to be selected
322
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts * 2 + self.num_null_experts).permute(2, 1, 0)
323
+
324
+ # Loop over all available experts in the model and perform the computation on each expert
325
+ for expert_idx in range(self.num_experts * 2):
326
+ expert_layer = self.experts[expert_idx if expert_idx < self.num_experts else expert_idx - self.num_experts]
327
+ idx, top_x = torch.where(expert_mask[expert_idx])
328
+
329
+ # Index the correct hidden states and compute the expert hidden state for
330
+ # the current expert. We need to make sure to multiply the output hidden
331
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
332
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
333
+ if expert_idx < self.num_experts:
334
+ current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None]
335
+ else:
336
+ current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None] * -1.0
337
+ current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None]
338
+
339
+ # However `index_add_` only support torch tensors for indexing so we'll use
340
+ # the `top_x` tensor here.
341
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
342
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
343
+ return final_hidden_states
344
+
345
+
346
+ class TCMoEDecoderLayer(nn.Module):
347
+ def __init__(self, config: TCMoEConfig):
348
+ super().__init__()
349
+ self.self_attn = Attention(config)
350
+ self.mlp = TCMoEBlock(config)
351
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.norm_eps)
352
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.norm_eps)
353
+
354
+ def forward(
355
+ self,
356
+ hidden_states: Optional[torch.FloatTensor],
357
+ attention_mask: Optional[torch.FloatTensor] = None,
358
+ position_ids: Optional[torch.LongTensor] = None,
359
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
360
+ output_attentions: Optional[bool] = False,
361
+ use_cache: Optional[bool] = False,
362
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
363
+ residual = hidden_states
364
+
365
+ hidden_states = self.input_layernorm(hidden_states)
366
+
367
+ # Self Attention
368
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
369
+ hidden_states=hidden_states,
370
+ attention_mask=attention_mask,
371
+ position_ids=position_ids,
372
+ past_key_value=past_key_value,
373
+ output_attentions=output_attentions,
374
+ use_cache=use_cache,
375
+ )
376
+ hidden_states = residual + hidden_states
377
+
378
+ # Fully Connected
379
+ residual = hidden_states
380
+ hidden_states = self.post_attention_layernorm(hidden_states)
381
+ hidden_states = self.mlp(hidden_states)
382
+ hidden_states = residual + hidden_states
383
+
384
+ outputs = (hidden_states,)
385
+
386
+ if output_attentions:
387
+ outputs += (self_attn_weights,)
388
+
389
+ if use_cache:
390
+ outputs += (present_key_value,)
391
+
392
+ return outputs
393
+
394
+
395
+ class TCMoEPreTrainedModel(PreTrainedModel):
396
+ """An abstract class to handle weights initialization and a simple interface
397
+ for downloading and loading pretrained models.
398
+ """
399
+
400
+ config_class = TCMoEConfig
401
+ base_model_prefix = "transformer"
402
+ supports_gradient_checkpointing = True
403
+ _no_split_modules = ["TCMoEDecoderLayer"]
404
+ _skip_keys_device_placement = "past_key_values"
405
+
406
+ def _init_weights(self, module):
407
+ std = self.config.initializer_range
408
+ if isinstance(module, nn.Linear):
409
+ module.weight.data.normal_(mean=0.0, std=std)
410
+ if module.bias is not None:
411
+ module.bias.data.zero_()
412
+ elif isinstance(module, nn.Embedding):
413
+ module.weight.data.normal_(mean=0.0, std=std)
414
+ if module.padding_idx is not None:
415
+ module.weight.data[module.padding_idx].zero_()
416
+ elif isinstance(module, RMSNorm):
417
+ module.weight.data.fill_(1.0)
418
+ elif isinstance(module, nn.LayerNorm):
419
+ module.bias.data.zero_()
420
+ module.weight.data.fill_(1.0)
421
+
422
+
423
+ class TCMoEModel(TCMoEPreTrainedModel):
424
+ def __init__(self, config: TCMoEConfig):
425
+ super().__init__(config)
426
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
427
+ self.layers = nn.ModuleList([TCMoEDecoderLayer(config) for _ in range(config.num_hidden_layers)])
428
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
429
+
430
+ self.gradient_checkpointing = False
431
+ # Initialize weights and apply final processing
432
+ self.post_init()
433
+
434
+ def get_input_embeddings(self):
435
+ return self.embed_tokens
436
+
437
+ def set_input_embeddings(self, value):
438
+ self.embed_tokens = value
439
+
440
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
441
+ def _prepare_decoder_attention_mask(
442
+ self,
443
+ attention_mask: torch.Tensor,
444
+ input_shape: torch.Size,
445
+ inputs_embeds: torch.Tensor,
446
+ past_key_values_length: int,
447
+ ):
448
+ # Create causal mask
449
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
450
+ combined_attention_mask = None
451
+ if input_shape[-1] > 1:
452
+ combined_attention_mask = _make_causal_mask(
453
+ input_shape,
454
+ inputs_embeds.dtype,
455
+ device=inputs_embeds.device,
456
+ past_key_values_length=past_key_values_length,
457
+ )
458
+
459
+ if attention_mask is not None:
460
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
461
+ expanded_attn_mask = _expand_mask(
462
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
463
+ ).to(inputs_embeds.device)
464
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
465
+
466
+ return combined_attention_mask
467
+
468
+ def forward(
469
+ self,
470
+ input_ids: Optional[torch.LongTensor] = None,
471
+ attention_mask: Optional[torch.FloatTensor] = None,
472
+ position_ids: Optional[torch.LongTensor] = None,
473
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
474
+ inputs_embeds: Optional[torch.FloatTensor] = None,
475
+ use_cache: Optional[bool] = None,
476
+ output_attentions: Optional[bool] = None,
477
+ output_hidden_states: Optional[bool] = None,
478
+ return_dict: Optional[bool] = None,
479
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
480
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
481
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
482
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
483
+
484
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
485
+
486
+ # Retrieve input_ids and inputs_embeds
487
+ if input_ids is not None and inputs_embeds is not None:
488
+ raise ValueError(
489
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
490
+ )
491
+ elif input_ids is not None:
492
+ batch_size, seq_length = input_ids.shape
493
+ elif inputs_embeds is not None:
494
+ batch_size, seq_length, _ = inputs_embeds.shape
495
+ else:
496
+ raise ValueError(
497
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
498
+ )
499
+
500
+ seq_length_with_past = seq_length
501
+ past_key_values_length = 0
502
+
503
+ if past_key_values is not None:
504
+ past_key_values_length = past_key_values[0][0].shape[2]
505
+ seq_length_with_past = seq_length_with_past + past_key_values_length
506
+
507
+ if position_ids is None:
508
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
509
+ position_ids = torch.arange(
510
+ past_key_values_length,
511
+ seq_length + past_key_values_length,
512
+ dtype=torch.long,
513
+ device=device,
514
+ )
515
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
516
+ else:
517
+ position_ids = position_ids.view(-1, seq_length).long()
518
+
519
+ if inputs_embeds is None:
520
+ inputs_embeds = self.embed_tokens(input_ids)
521
+ # Embed positions
522
+ if attention_mask is None:
523
+ attention_mask = torch.ones(
524
+ (batch_size, seq_length_with_past),
525
+ dtype=torch.bool,
526
+ device=inputs_embeds.device,
527
+ )
528
+ attention_mask = self._prepare_decoder_attention_mask(
529
+ attention_mask,
530
+ (batch_size, seq_length),
531
+ inputs_embeds,
532
+ past_key_values_length,
533
+ )
534
+
535
+ hidden_states = inputs_embeds
536
+
537
+ if self.gradient_checkpointing and self.training:
538
+ if use_cache:
539
+ logger.warning(
540
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
541
+ )
542
+ use_cache = False
543
+
544
+ # Decoder layers
545
+ all_hidden_states = () if output_hidden_states else None
546
+ all_self_attns = () if output_attentions else None
547
+ next_decoder_cache = () if use_cache else None
548
+
549
+ for idx, decoder_layer in enumerate(self.layers):
550
+ if output_hidden_states:
551
+ all_hidden_states += (hidden_states,)
552
+
553
+ past_key_value = (
554
+ past_key_values[idx] if past_key_values is not None else None
555
+ )
556
+
557
+ if self.gradient_checkpointing and self.training:
558
+
559
+ def create_custom_forward(module):
560
+ def custom_forward(*inputs):
561
+ # None for past_key_value
562
+ return module(*inputs, past_key_value, output_attentions)
563
+
564
+ return custom_forward
565
+
566
+ layer_outputs = torch.utils.checkpoint.checkpoint(
567
+ create_custom_forward(decoder_layer),
568
+ hidden_states,
569
+ attention_mask,
570
+ position_ids,
571
+ )
572
+ else:
573
+ layer_outputs = decoder_layer(
574
+ hidden_states,
575
+ attention_mask=attention_mask,
576
+ position_ids=position_ids,
577
+ past_key_value=past_key_value,
578
+ output_attentions=output_attentions,
579
+ use_cache=use_cache,
580
+ )
581
+
582
+ hidden_states = layer_outputs[0]
583
+
584
+ if use_cache:
585
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
586
+
587
+ if output_attentions:
588
+ all_self_attns += (layer_outputs[1],)
589
+
590
+ hidden_states = self.norm(hidden_states)
591
+
592
+ # Add hidden states from the last decoder layer
593
+ if output_hidden_states:
594
+ all_hidden_states += (hidden_states,)
595
+
596
+ next_cache = next_decoder_cache if use_cache else None
597
+ if not return_dict:
598
+ return tuple(
599
+ v
600
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
601
+ if v is not None
602
+ )
603
+ return BaseModelOutputWithPast(
604
+ last_hidden_state=hidden_states,
605
+ past_key_values=next_cache,
606
+ hidden_states=all_hidden_states,
607
+ attentions=all_self_attns,
608
+ )
609
+
610
+ class TCMoEForCausalLM(PreTrainedModel):
611
+ _tied_weights_keys = ["lm_head.weight"]
612
+
613
+ def __init__(self, config):
614
+ super().__init__(config)
615
+ self.model = TCMoEModel(config)
616
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
617
+
618
+ # Initialize weights and apply final processing
619
+ self.post_init()
620
+
621
+ def get_input_embeddings(self):
622
+ return self.model.embed_tokens
623
+
624
+ def set_input_embeddings(self, value):
625
+ self.model.embed_tokens = value
626
+
627
+ def get_output_embeddings(self):
628
+ return self.lm_head
629
+
630
+ def set_output_embeddings(self, new_embeddings: nn.Module):
631
+ self.lm_head = new_embeddings
632
+
633
+ def get_decoder(self):
634
+ return self.model
635
+
636
+ def set_decoder(self, decoder):
637
+ self.model = decoder
638
+
639
+ def forward(
640
+ self,
641
+ input_ids: Optional[torch.LongTensor] = None,
642
+ attention_mask: Optional[torch.FloatTensor] = None,
643
+ position_ids: Optional[torch.LongTensor] = None,
644
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
645
+ inputs_embeds: Optional[torch.FloatTensor] = None,
646
+ labels: Optional[torch.LongTensor] = None,
647
+ use_cache: Optional[bool] = None,
648
+ output_attentions: Optional[bool] = None,
649
+ output_hidden_states: Optional[bool] = None,
650
+ return_dict: Optional[bool] = None,
651
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
652
+ output_attentions = (
653
+ output_attentions
654
+ if output_attentions is not None
655
+ else self.config.output_attentions
656
+ )
657
+ output_hidden_states = (
658
+ output_hidden_states
659
+ if output_hidden_states is not None
660
+ else self.config.output_hidden_states
661
+ )
662
+ return_dict = (
663
+ return_dict if return_dict is not None else self.config.use_return_dict
664
+ )
665
+
666
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
667
+ outputs = self.model(
668
+ input_ids,
669
+ attention_mask=attention_mask,
670
+ position_ids=position_ids,
671
+ past_key_values=past_key_values,
672
+ inputs_embeds=inputs_embeds,
673
+ use_cache=use_cache,
674
+ output_attentions=output_attentions,
675
+ output_hidden_states=output_hidden_states,
676
+ return_dict=return_dict,
677
+ )
678
+
679
+ hidden_states = outputs[0]
680
+ logits = self.lm_head(hidden_states).float()
681
+
682
+ loss = None
683
+ if labels is not None:
684
+ # Shift so that tokens < n predict n
685
+ shift_logits = logits[..., :-1, :].contiguous()
686
+ shift_labels = labels[..., 1:].contiguous()
687
+ # Flatten the tokens
688
+ loss_fct = CrossEntropyLoss()
689
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
690
+ shift_labels = shift_labels.view(-1)
691
+ # Enable model parallelism
692
+ shift_labels = shift_labels.to(shift_logits.device)
693
+ loss = loss_fct(shift_logits, shift_labels)
694
+
695
+ if not return_dict:
696
+ output = (logits,) + outputs[1:]
697
+ return (loss,) + output if loss is not None else output
698
+
699
+ return CausalLMOutputWithPast(
700
+ loss=loss,
701
+ logits=logits,
702
+ past_key_values=outputs.past_key_values,
703
+ hidden_states=outputs.hidden_states,
704
+ attentions=outputs.attentions,
705
+ )
706
+
707
+ def prepare_inputs_for_generation(
708
+ self,
709
+ input_ids,
710
+ past_key_values: Optional[torch.Tensor] = None,
711
+ attention_mask: Optional[torch.Tensor] = None,
712
+ inputs_embeds: Optional[torch.Tensor] = None,
713
+ **kwargs,
714
+ ):
715
+ # Trim decoder_input_ids if past is used
716
+ if past_key_values and past_key_values[0] is not None:
717
+ input_ids = input_ids[:, -1:]
718
+
719
+ position_ids = kwargs.get("position_ids", None)
720
+ if attention_mask is not None and position_ids is None:
721
+ # Create position_ids on the fly for batch generation
722
+ position_ids = attention_mask.long().cumsum(-1) - 1
723
+ position_ids.masked_fill_(attention_mask == 0, 1)
724
+ if past_key_values:
725
+ position_ids = position_ids[:, -1].unsqueeze(-1)
726
+
727
+ # If `inputs_embeds` are passed, we only want to use them in the 1st generation step
728
+ if inputs_embeds is not None and past_key_values is None:
729
+ model_inputs = {"inputs_embeds": inputs_embeds}
730
+ else:
731
+ model_inputs = {"input_ids": input_ids}
732
+
733
+ model_inputs.update(
734
+ {
735
+ "attention_mask": attention_mask,
736
+ "past_key_values": past_key_values,
737
+ "use_cache": kwargs.get("use_cache"),
738
+ "position_ids": position_ids,
739
+ }
740
+ )
741
+ return model_inputs
742
+
743
+ @staticmethod
744
+ def _reorder_cache(past_key_values, beam_idx):
745
+ reordered_past = ()
746
+ for layer_past in past_key_values:
747
+ reordered_past += (
748
+ tuple(
749
+ past_state.index_select(0, beam_idx.to(past_state.device))
750
+ for past_state in layer_past
751
+ ),
752
+ )
753
+ return reordered_past
754
+
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|padding|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 2048,
7
+ "tokenizer_class": "GPTNeoXTokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }