yanshen.1000
commited on
Commit
·
48fdca1
1
Parent(s):
34f5049
Initial commit
Browse files- config.json +25 -0
- configuration_tcmoe.py +105 -0
- generation_config.json +7 -0
- model-00001-of-00019.safetensors +3 -0
- model-00002-of-00019.safetensors +3 -0
- model-00003-of-00019.safetensors +3 -0
- model-00004-of-00019.safetensors +3 -0
- model-00005-of-00019.safetensors +3 -0
- model-00006-of-00019.safetensors +3 -0
- model-00007-of-00019.safetensors +3 -0
- model-00008-of-00019.safetensors +3 -0
- model-00009-of-00019.safetensors +3 -0
- model-00010-of-00019.safetensors +3 -0
- model-00011-of-00019.safetensors +3 -0
- model-00012-of-00019.safetensors +3 -0
- model-00013-of-00019.safetensors +3 -0
- model-00014-of-00019.safetensors +3 -0
- model-00015-of-00019.safetensors +3 -0
- model-00016-of-00019.safetensors +3 -0
- model-00017-of-00019.safetensors +3 -0
- model-00018-of-00019.safetensors +3 -0
- model-00019-of-00019.safetensors +3 -0
- model.safetensors.index.json +1034 -0
- modeling_tcmoe.py +754 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TCMoEForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 0,
|
6 |
+
"eos_token_id": 0,
|
7 |
+
"hidden_size": 1024,
|
8 |
+
"initializer_range": 0.006,
|
9 |
+
"intermediate_size": 2816,
|
10 |
+
"max_position_embeddings": 2048,
|
11 |
+
"model_type": "tcmoe",
|
12 |
+
"moe_topk": 2,
|
13 |
+
"norm_eps": 1e-05,
|
14 |
+
"num_attention_heads": 16,
|
15 |
+
"num_experts": 8,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"num_null_experts": 2,
|
19 |
+
"rope_pct": 1.0,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.49.0",
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50432
|
25 |
+
}
|
configuration_tcmoe.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The HuggingFace Inc. team. All rights reserved.
|
2 |
+
# Copyright (c) Shen Yan. All rights reserved.
|
3 |
+
# This code is built upon Huggingface's transformers repository.
|
4 |
+
|
5 |
+
from transformers import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class TCMoEConfig(PretrainedConfig):
|
13 |
+
r"""
|
14 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
15 |
+
documentation from [`PretrainedConfig`] for more information.
|
16 |
+
Args:
|
17 |
+
vocab_size (`int`, *optional*, defaults to 50_304):
|
18 |
+
Vocabulary size of the StableLM model. Defines the number of different tokens that
|
19 |
+
can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`].
|
20 |
+
intermediate_size (`int`, *optional*, defaults to 6912):
|
21 |
+
Dimension of the MLP representations.
|
22 |
+
hidden_size (`int`, *optional*, defaults to 2560):
|
23 |
+
Dimension of the decoder layers and the pooler layer.
|
24 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
25 |
+
Number of hidden layers in the Transformer decoder.
|
26 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
27 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
28 |
+
num_key_value_heads (`int`, *optional*):
|
29 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
30 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
31 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
32 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
33 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
34 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
35 |
+
`num_attention_heads`.
|
36 |
+
rope_pct (`float`, *optional*, defaults to 1.0):
|
37 |
+
Percentage of hidden dimensions to allocate to rotary embeddings.
|
38 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
39 |
+
The base period of the RoPE embeddings.
|
40 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
41 |
+
The maximum sequence length that this model might ever be used with.
|
42 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
43 |
+
num_experts (`int`, *optional*, defaults to 8):
|
44 |
+
Number of experts in the TCMoE layer.
|
45 |
+
top_k (`int`, *optional*, defaults to 2):
|
46 |
+
Number of top experts to use in the TCMoE layer.
|
47 |
+
num_null_experts (`int`, *optional*, defaults to 2):
|
48 |
+
Number of null experts in the TCMoE layer.
|
49 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
50 |
+
The standard deviation of the truncated_normal_initializer for initializing
|
51 |
+
all weight matrices.
|
52 |
+
norm_eps (`float`, *optional*, defaults to 1e-8):
|
53 |
+
The epsilon used by the normalization layers.
|
54 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
55 |
+
Whether or not the model should return the last key/values attentions
|
56 |
+
(not used by all models). Only relevant if `config.is_decoder=True`.
|
57 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
58 |
+
Whether to tie weight embeddings
|
59 |
+
"""
|
60 |
+
model_type = "tcmoe"
|
61 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
vocab_size=50432,
|
66 |
+
intermediate_size=2816,
|
67 |
+
hidden_size=1024,
|
68 |
+
num_hidden_layers=32,
|
69 |
+
num_attention_heads=16,
|
70 |
+
num_key_value_heads=2,
|
71 |
+
rope_pct=1.0,
|
72 |
+
rope_theta=10000.0,
|
73 |
+
max_position_embeddings=2048,
|
74 |
+
num_experts=8,
|
75 |
+
moe_topk=2,
|
76 |
+
num_null_experts=2,
|
77 |
+
initializer_range=0.006,
|
78 |
+
norm_eps=1e-8,
|
79 |
+
use_cache=True,
|
80 |
+
bos_token_id=0,
|
81 |
+
eos_token_id=0,
|
82 |
+
tie_word_embeddings=True,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
self.vocab_size = vocab_size
|
86 |
+
self.intermediate_size = intermediate_size
|
87 |
+
self.hidden_size = hidden_size
|
88 |
+
self.num_hidden_layers = num_hidden_layers
|
89 |
+
self.num_attention_heads = num_attention_heads
|
90 |
+
self.num_key_value_heads = num_key_value_heads
|
91 |
+
self.rope_pct = rope_pct
|
92 |
+
self.rope_theta = rope_theta
|
93 |
+
self.max_position_embeddings = max_position_embeddings
|
94 |
+
self.num_experts = num_experts
|
95 |
+
self.moe_topk = moe_topk
|
96 |
+
self.num_null_experts = num_null_experts
|
97 |
+
self.initializer_range = initializer_range
|
98 |
+
self.norm_eps = norm_eps
|
99 |
+
self.use_cache = use_cache
|
100 |
+
super().__init__(
|
101 |
+
bos_token_id=bos_token_id,
|
102 |
+
eos_token_id=eos_token_id,
|
103 |
+
tie_word_embeddings=tie_word_embeddings,
|
104 |
+
**kwargs,
|
105 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"transformers_version": "4.49.0"
|
7 |
+
}
|
model-00001-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90d07f3aeb8643dd02704b0d27c7414808a64c53542a2fb90faf2eb2ae173dfc
|
3 |
+
size 498160032
|
model-00002-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53cfd8caa2c9e8463635e9c219748bf1bf3e530138532dd8228f35568ad52ed2
|
3 |
+
size 498236040
|
model-00003-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:675c9faade10a982f2967c479a5ca3a85725f03b3859aae1d01b0cab86346791
|
3 |
+
size 491953216
|
model-00004-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9841c59f16a808783a7e55ad736795092484dcae8fe2e6b23f0c0bf7dd95fc97
|
3 |
+
size 491953224
|
model-00005-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ef57825824a6f5b84b8eee636a8c0ac67981c3b2cd0e514533b48355a394afa
|
3 |
+
size 493967424
|
model-00006-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32c6259281b636b15270a749581217b6e40fc54e3686b1d3d075b2801c4e798c
|
3 |
+
size 491953216
|
model-00007-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f99b50dba3ca79383985679564673a9329ab169b74557aa9f152ae280db54476
|
3 |
+
size 491953264
|
model-00008-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8672c5c84f1d63968163cc3ebb20cdab2e2e01135e66e659ddf3dea3a1256ba4
|
3 |
+
size 491953280
|
model-00009-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18c392741f002ee5b706fd6fd782bb2aa7be6262affd6513e7e18487322741fe
|
3 |
+
size 493967472
|
model-00010-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0105702f7736aaa02d1426b78c0a5b6308328cb4f622738575541a3717f3f074
|
3 |
+
size 491953272
|
model-00011-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d244602a007747106e0388f97a3b9566af754ba2875d69c756f1b70e30d06a9f
|
3 |
+
size 491953272
|
model-00012-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:856761815382338415e391fcd171e0262da0bab418c23019244c567b7a17822b
|
3 |
+
size 493967472
|
model-00013-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7d7f063c85714bb203f1fb5b3b41b0becc0672c4924b6757004546b5c298247
|
3 |
+
size 491953272
|
model-00014-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eae682f0ba53f0d7c13c2f725ded2d99634fa91b1194746271bb4ca00e34b7b2
|
3 |
+
size 491953272
|
model-00015-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28e639ecd56371e49f66726f3fe1876aa46408a6698721866b56c2e0382c405a
|
3 |
+
size 491953272
|
model-00016-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:508d0e4ea3c9a21212513f26bfd181fd0bd9d5cf0b4c27f4ef5603736a83857e
|
3 |
+
size 493967472
|
model-00017-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b24beb8f65124438c509cebb9000873f8f3f127bd0485a9db0ba21f15f1b0990
|
3 |
+
size 491953272
|
model-00018-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41d2fac289da771fc4b24fdc73f9214d836faa92122c8578329cd23684508bb5
|
3 |
+
size 491953272
|
model-00019-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90bc3501c02eb232a1ecd8df7708b679c71d3ef2627819ba33131622706467c6
|
3 |
+
size 493984264
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,1034 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9369567232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00019.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00019.safetensors",
|
8 |
+
"model.layers.0.mlp.experts.0.down_proj.weight": "model-00001-of-00019.safetensors",
|
9 |
+
"model.layers.0.mlp.experts.0.gate_proj.weight": "model-00001-of-00019.safetensors",
|
10 |
+
"model.layers.0.mlp.experts.0.up_proj.weight": "model-00001-of-00019.safetensors",
|
11 |
+
"model.layers.0.mlp.experts.1.down_proj.weight": "model-00001-of-00019.safetensors",
|
12 |
+
"model.layers.0.mlp.experts.1.gate_proj.weight": "model-00001-of-00019.safetensors",
|
13 |
+
"model.layers.0.mlp.experts.1.up_proj.weight": "model-00001-of-00019.safetensors",
|
14 |
+
"model.layers.0.mlp.experts.2.down_proj.weight": "model-00001-of-00019.safetensors",
|
15 |
+
"model.layers.0.mlp.experts.2.gate_proj.weight": "model-00001-of-00019.safetensors",
|
16 |
+
"model.layers.0.mlp.experts.2.up_proj.weight": "model-00001-of-00019.safetensors",
|
17 |
+
"model.layers.0.mlp.experts.3.down_proj.weight": "model-00001-of-00019.safetensors",
|
18 |
+
"model.layers.0.mlp.experts.3.gate_proj.weight": "model-00001-of-00019.safetensors",
|
19 |
+
"model.layers.0.mlp.experts.3.up_proj.weight": "model-00001-of-00019.safetensors",
|
20 |
+
"model.layers.0.mlp.experts.4.down_proj.weight": "model-00001-of-00019.safetensors",
|
21 |
+
"model.layers.0.mlp.experts.4.gate_proj.weight": "model-00001-of-00019.safetensors",
|
22 |
+
"model.layers.0.mlp.experts.4.up_proj.weight": "model-00001-of-00019.safetensors",
|
23 |
+
"model.layers.0.mlp.experts.5.down_proj.weight": "model-00001-of-00019.safetensors",
|
24 |
+
"model.layers.0.mlp.experts.5.gate_proj.weight": "model-00001-of-00019.safetensors",
|
25 |
+
"model.layers.0.mlp.experts.5.up_proj.weight": "model-00001-of-00019.safetensors",
|
26 |
+
"model.layers.0.mlp.experts.6.down_proj.weight": "model-00001-of-00019.safetensors",
|
27 |
+
"model.layers.0.mlp.experts.6.gate_proj.weight": "model-00001-of-00019.safetensors",
|
28 |
+
"model.layers.0.mlp.experts.6.up_proj.weight": "model-00001-of-00019.safetensors",
|
29 |
+
"model.layers.0.mlp.experts.7.down_proj.weight": "model-00001-of-00019.safetensors",
|
30 |
+
"model.layers.0.mlp.experts.7.gate_proj.weight": "model-00001-of-00019.safetensors",
|
31 |
+
"model.layers.0.mlp.experts.7.up_proj.weight": "model-00001-of-00019.safetensors",
|
32 |
+
"model.layers.0.mlp.gate.weight": "model-00001-of-00019.safetensors",
|
33 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00019.safetensors",
|
34 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00019.safetensors",
|
35 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
|
36 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00019.safetensors",
|
37 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
|
38 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
|
39 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00019.safetensors",
|
40 |
+
"model.layers.1.mlp.experts.0.down_proj.weight": "model-00002-of-00019.safetensors",
|
41 |
+
"model.layers.1.mlp.experts.0.gate_proj.weight": "model-00002-of-00019.safetensors",
|
42 |
+
"model.layers.1.mlp.experts.0.up_proj.weight": "model-00002-of-00019.safetensors",
|
43 |
+
"model.layers.1.mlp.experts.1.down_proj.weight": "model-00002-of-00019.safetensors",
|
44 |
+
"model.layers.1.mlp.experts.1.gate_proj.weight": "model-00002-of-00019.safetensors",
|
45 |
+
"model.layers.1.mlp.experts.1.up_proj.weight": "model-00002-of-00019.safetensors",
|
46 |
+
"model.layers.1.mlp.experts.2.down_proj.weight": "model-00002-of-00019.safetensors",
|
47 |
+
"model.layers.1.mlp.experts.2.gate_proj.weight": "model-00002-of-00019.safetensors",
|
48 |
+
"model.layers.1.mlp.experts.2.up_proj.weight": "model-00002-of-00019.safetensors",
|
49 |
+
"model.layers.1.mlp.experts.3.down_proj.weight": "model-00002-of-00019.safetensors",
|
50 |
+
"model.layers.1.mlp.experts.3.gate_proj.weight": "model-00002-of-00019.safetensors",
|
51 |
+
"model.layers.1.mlp.experts.3.up_proj.weight": "model-00002-of-00019.safetensors",
|
52 |
+
"model.layers.1.mlp.experts.4.down_proj.weight": "model-00002-of-00019.safetensors",
|
53 |
+
"model.layers.1.mlp.experts.4.gate_proj.weight": "model-00002-of-00019.safetensors",
|
54 |
+
"model.layers.1.mlp.experts.4.up_proj.weight": "model-00002-of-00019.safetensors",
|
55 |
+
"model.layers.1.mlp.experts.5.down_proj.weight": "model-00002-of-00019.safetensors",
|
56 |
+
"model.layers.1.mlp.experts.5.gate_proj.weight": "model-00002-of-00019.safetensors",
|
57 |
+
"model.layers.1.mlp.experts.5.up_proj.weight": "model-00002-of-00019.safetensors",
|
58 |
+
"model.layers.1.mlp.experts.6.down_proj.weight": "model-00002-of-00019.safetensors",
|
59 |
+
"model.layers.1.mlp.experts.6.gate_proj.weight": "model-00002-of-00019.safetensors",
|
60 |
+
"model.layers.1.mlp.experts.6.up_proj.weight": "model-00002-of-00019.safetensors",
|
61 |
+
"model.layers.1.mlp.experts.7.down_proj.weight": "model-00002-of-00019.safetensors",
|
62 |
+
"model.layers.1.mlp.experts.7.gate_proj.weight": "model-00002-of-00019.safetensors",
|
63 |
+
"model.layers.1.mlp.experts.7.up_proj.weight": "model-00002-of-00019.safetensors",
|
64 |
+
"model.layers.1.mlp.gate.weight": "model-00002-of-00019.safetensors",
|
65 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00019.safetensors",
|
66 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00002-of-00019.safetensors",
|
67 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
|
68 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
|
69 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
|
70 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
|
71 |
+
"model.layers.10.input_layernorm.weight": "model-00007-of-00019.safetensors",
|
72 |
+
"model.layers.10.mlp.experts.0.down_proj.weight": "model-00007-of-00019.safetensors",
|
73 |
+
"model.layers.10.mlp.experts.0.gate_proj.weight": "model-00007-of-00019.safetensors",
|
74 |
+
"model.layers.10.mlp.experts.0.up_proj.weight": "model-00007-of-00019.safetensors",
|
75 |
+
"model.layers.10.mlp.experts.1.down_proj.weight": "model-00007-of-00019.safetensors",
|
76 |
+
"model.layers.10.mlp.experts.1.gate_proj.weight": "model-00007-of-00019.safetensors",
|
77 |
+
"model.layers.10.mlp.experts.1.up_proj.weight": "model-00007-of-00019.safetensors",
|
78 |
+
"model.layers.10.mlp.experts.2.down_proj.weight": "model-00007-of-00019.safetensors",
|
79 |
+
"model.layers.10.mlp.experts.2.gate_proj.weight": "model-00007-of-00019.safetensors",
|
80 |
+
"model.layers.10.mlp.experts.2.up_proj.weight": "model-00007-of-00019.safetensors",
|
81 |
+
"model.layers.10.mlp.experts.3.down_proj.weight": "model-00007-of-00019.safetensors",
|
82 |
+
"model.layers.10.mlp.experts.3.gate_proj.weight": "model-00007-of-00019.safetensors",
|
83 |
+
"model.layers.10.mlp.experts.3.up_proj.weight": "model-00007-of-00019.safetensors",
|
84 |
+
"model.layers.10.mlp.experts.4.down_proj.weight": "model-00007-of-00019.safetensors",
|
85 |
+
"model.layers.10.mlp.experts.4.gate_proj.weight": "model-00007-of-00019.safetensors",
|
86 |
+
"model.layers.10.mlp.experts.4.up_proj.weight": "model-00007-of-00019.safetensors",
|
87 |
+
"model.layers.10.mlp.experts.5.down_proj.weight": "model-00007-of-00019.safetensors",
|
88 |
+
"model.layers.10.mlp.experts.5.gate_proj.weight": "model-00007-of-00019.safetensors",
|
89 |
+
"model.layers.10.mlp.experts.5.up_proj.weight": "model-00007-of-00019.safetensors",
|
90 |
+
"model.layers.10.mlp.experts.6.down_proj.weight": "model-00007-of-00019.safetensors",
|
91 |
+
"model.layers.10.mlp.experts.6.gate_proj.weight": "model-00007-of-00019.safetensors",
|
92 |
+
"model.layers.10.mlp.experts.6.up_proj.weight": "model-00007-of-00019.safetensors",
|
93 |
+
"model.layers.10.mlp.experts.7.down_proj.weight": "model-00007-of-00019.safetensors",
|
94 |
+
"model.layers.10.mlp.experts.7.gate_proj.weight": "model-00007-of-00019.safetensors",
|
95 |
+
"model.layers.10.mlp.experts.7.up_proj.weight": "model-00007-of-00019.safetensors",
|
96 |
+
"model.layers.10.mlp.gate.weight": "model-00007-of-00019.safetensors",
|
97 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00007-of-00019.safetensors",
|
98 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00007-of-00019.safetensors",
|
99 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00007-of-00019.safetensors",
|
100 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00007-of-00019.safetensors",
|
101 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00007-of-00019.safetensors",
|
102 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00007-of-00019.safetensors",
|
103 |
+
"model.layers.11.input_layernorm.weight": "model-00008-of-00019.safetensors",
|
104 |
+
"model.layers.11.mlp.experts.0.down_proj.weight": "model-00007-of-00019.safetensors",
|
105 |
+
"model.layers.11.mlp.experts.0.gate_proj.weight": "model-00007-of-00019.safetensors",
|
106 |
+
"model.layers.11.mlp.experts.0.up_proj.weight": "model-00007-of-00019.safetensors",
|
107 |
+
"model.layers.11.mlp.experts.1.down_proj.weight": "model-00007-of-00019.safetensors",
|
108 |
+
"model.layers.11.mlp.experts.1.gate_proj.weight": "model-00007-of-00019.safetensors",
|
109 |
+
"model.layers.11.mlp.experts.1.up_proj.weight": "model-00007-of-00019.safetensors",
|
110 |
+
"model.layers.11.mlp.experts.2.down_proj.weight": "model-00008-of-00019.safetensors",
|
111 |
+
"model.layers.11.mlp.experts.2.gate_proj.weight": "model-00007-of-00019.safetensors",
|
112 |
+
"model.layers.11.mlp.experts.2.up_proj.weight": "model-00007-of-00019.safetensors",
|
113 |
+
"model.layers.11.mlp.experts.3.down_proj.weight": "model-00008-of-00019.safetensors",
|
114 |
+
"model.layers.11.mlp.experts.3.gate_proj.weight": "model-00008-of-00019.safetensors",
|
115 |
+
"model.layers.11.mlp.experts.3.up_proj.weight": "model-00008-of-00019.safetensors",
|
116 |
+
"model.layers.11.mlp.experts.4.down_proj.weight": "model-00008-of-00019.safetensors",
|
117 |
+
"model.layers.11.mlp.experts.4.gate_proj.weight": "model-00008-of-00019.safetensors",
|
118 |
+
"model.layers.11.mlp.experts.4.up_proj.weight": "model-00008-of-00019.safetensors",
|
119 |
+
"model.layers.11.mlp.experts.5.down_proj.weight": "model-00008-of-00019.safetensors",
|
120 |
+
"model.layers.11.mlp.experts.5.gate_proj.weight": "model-00008-of-00019.safetensors",
|
121 |
+
"model.layers.11.mlp.experts.5.up_proj.weight": "model-00008-of-00019.safetensors",
|
122 |
+
"model.layers.11.mlp.experts.6.down_proj.weight": "model-00008-of-00019.safetensors",
|
123 |
+
"model.layers.11.mlp.experts.6.gate_proj.weight": "model-00008-of-00019.safetensors",
|
124 |
+
"model.layers.11.mlp.experts.6.up_proj.weight": "model-00008-of-00019.safetensors",
|
125 |
+
"model.layers.11.mlp.experts.7.down_proj.weight": "model-00008-of-00019.safetensors",
|
126 |
+
"model.layers.11.mlp.experts.7.gate_proj.weight": "model-00008-of-00019.safetensors",
|
127 |
+
"model.layers.11.mlp.experts.7.up_proj.weight": "model-00008-of-00019.safetensors",
|
128 |
+
"model.layers.11.mlp.gate.weight": "model-00007-of-00019.safetensors",
|
129 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
|
130 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00007-of-00019.safetensors",
|
131 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00007-of-00019.safetensors",
|
132 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00007-of-00019.safetensors",
|
133 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00007-of-00019.safetensors",
|
134 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00007-of-00019.safetensors",
|
135 |
+
"model.layers.12.input_layernorm.weight": "model-00008-of-00019.safetensors",
|
136 |
+
"model.layers.12.mlp.experts.0.down_proj.weight": "model-00008-of-00019.safetensors",
|
137 |
+
"model.layers.12.mlp.experts.0.gate_proj.weight": "model-00008-of-00019.safetensors",
|
138 |
+
"model.layers.12.mlp.experts.0.up_proj.weight": "model-00008-of-00019.safetensors",
|
139 |
+
"model.layers.12.mlp.experts.1.down_proj.weight": "model-00008-of-00019.safetensors",
|
140 |
+
"model.layers.12.mlp.experts.1.gate_proj.weight": "model-00008-of-00019.safetensors",
|
141 |
+
"model.layers.12.mlp.experts.1.up_proj.weight": "model-00008-of-00019.safetensors",
|
142 |
+
"model.layers.12.mlp.experts.2.down_proj.weight": "model-00008-of-00019.safetensors",
|
143 |
+
"model.layers.12.mlp.experts.2.gate_proj.weight": "model-00008-of-00019.safetensors",
|
144 |
+
"model.layers.12.mlp.experts.2.up_proj.weight": "model-00008-of-00019.safetensors",
|
145 |
+
"model.layers.12.mlp.experts.3.down_proj.weight": "model-00008-of-00019.safetensors",
|
146 |
+
"model.layers.12.mlp.experts.3.gate_proj.weight": "model-00008-of-00019.safetensors",
|
147 |
+
"model.layers.12.mlp.experts.3.up_proj.weight": "model-00008-of-00019.safetensors",
|
148 |
+
"model.layers.12.mlp.experts.4.down_proj.weight": "model-00008-of-00019.safetensors",
|
149 |
+
"model.layers.12.mlp.experts.4.gate_proj.weight": "model-00008-of-00019.safetensors",
|
150 |
+
"model.layers.12.mlp.experts.4.up_proj.weight": "model-00008-of-00019.safetensors",
|
151 |
+
"model.layers.12.mlp.experts.5.down_proj.weight": "model-00008-of-00019.safetensors",
|
152 |
+
"model.layers.12.mlp.experts.5.gate_proj.weight": "model-00008-of-00019.safetensors",
|
153 |
+
"model.layers.12.mlp.experts.5.up_proj.weight": "model-00008-of-00019.safetensors",
|
154 |
+
"model.layers.12.mlp.experts.6.down_proj.weight": "model-00008-of-00019.safetensors",
|
155 |
+
"model.layers.12.mlp.experts.6.gate_proj.weight": "model-00008-of-00019.safetensors",
|
156 |
+
"model.layers.12.mlp.experts.6.up_proj.weight": "model-00008-of-00019.safetensors",
|
157 |
+
"model.layers.12.mlp.experts.7.down_proj.weight": "model-00008-of-00019.safetensors",
|
158 |
+
"model.layers.12.mlp.experts.7.gate_proj.weight": "model-00008-of-00019.safetensors",
|
159 |
+
"model.layers.12.mlp.experts.7.up_proj.weight": "model-00008-of-00019.safetensors",
|
160 |
+
"model.layers.12.mlp.gate.weight": "model-00008-of-00019.safetensors",
|
161 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
|
162 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00008-of-00019.safetensors",
|
163 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
|
164 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
|
165 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
|
166 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
|
167 |
+
"model.layers.13.input_layernorm.weight": "model-00009-of-00019.safetensors",
|
168 |
+
"model.layers.13.mlp.experts.0.down_proj.weight": "model-00009-of-00019.safetensors",
|
169 |
+
"model.layers.13.mlp.experts.0.gate_proj.weight": "model-00008-of-00019.safetensors",
|
170 |
+
"model.layers.13.mlp.experts.0.up_proj.weight": "model-00009-of-00019.safetensors",
|
171 |
+
"model.layers.13.mlp.experts.1.down_proj.weight": "model-00009-of-00019.safetensors",
|
172 |
+
"model.layers.13.mlp.experts.1.gate_proj.weight": "model-00009-of-00019.safetensors",
|
173 |
+
"model.layers.13.mlp.experts.1.up_proj.weight": "model-00009-of-00019.safetensors",
|
174 |
+
"model.layers.13.mlp.experts.2.down_proj.weight": "model-00009-of-00019.safetensors",
|
175 |
+
"model.layers.13.mlp.experts.2.gate_proj.weight": "model-00009-of-00019.safetensors",
|
176 |
+
"model.layers.13.mlp.experts.2.up_proj.weight": "model-00009-of-00019.safetensors",
|
177 |
+
"model.layers.13.mlp.experts.3.down_proj.weight": "model-00009-of-00019.safetensors",
|
178 |
+
"model.layers.13.mlp.experts.3.gate_proj.weight": "model-00009-of-00019.safetensors",
|
179 |
+
"model.layers.13.mlp.experts.3.up_proj.weight": "model-00009-of-00019.safetensors",
|
180 |
+
"model.layers.13.mlp.experts.4.down_proj.weight": "model-00009-of-00019.safetensors",
|
181 |
+
"model.layers.13.mlp.experts.4.gate_proj.weight": "model-00009-of-00019.safetensors",
|
182 |
+
"model.layers.13.mlp.experts.4.up_proj.weight": "model-00009-of-00019.safetensors",
|
183 |
+
"model.layers.13.mlp.experts.5.down_proj.weight": "model-00009-of-00019.safetensors",
|
184 |
+
"model.layers.13.mlp.experts.5.gate_proj.weight": "model-00009-of-00019.safetensors",
|
185 |
+
"model.layers.13.mlp.experts.5.up_proj.weight": "model-00009-of-00019.safetensors",
|
186 |
+
"model.layers.13.mlp.experts.6.down_proj.weight": "model-00009-of-00019.safetensors",
|
187 |
+
"model.layers.13.mlp.experts.6.gate_proj.weight": "model-00009-of-00019.safetensors",
|
188 |
+
"model.layers.13.mlp.experts.6.up_proj.weight": "model-00009-of-00019.safetensors",
|
189 |
+
"model.layers.13.mlp.experts.7.down_proj.weight": "model-00009-of-00019.safetensors",
|
190 |
+
"model.layers.13.mlp.experts.7.gate_proj.weight": "model-00009-of-00019.safetensors",
|
191 |
+
"model.layers.13.mlp.experts.7.up_proj.weight": "model-00009-of-00019.safetensors",
|
192 |
+
"model.layers.13.mlp.gate.weight": "model-00008-of-00019.safetensors",
|
193 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00009-of-00019.safetensors",
|
194 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00008-of-00019.safetensors",
|
195 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
|
196 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
|
197 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
|
198 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
|
199 |
+
"model.layers.14.input_layernorm.weight": "model-00010-of-00019.safetensors",
|
200 |
+
"model.layers.14.mlp.experts.0.down_proj.weight": "model-00009-of-00019.safetensors",
|
201 |
+
"model.layers.14.mlp.experts.0.gate_proj.weight": "model-00009-of-00019.safetensors",
|
202 |
+
"model.layers.14.mlp.experts.0.up_proj.weight": "model-00009-of-00019.safetensors",
|
203 |
+
"model.layers.14.mlp.experts.1.down_proj.weight": "model-00009-of-00019.safetensors",
|
204 |
+
"model.layers.14.mlp.experts.1.gate_proj.weight": "model-00009-of-00019.safetensors",
|
205 |
+
"model.layers.14.mlp.experts.1.up_proj.weight": "model-00009-of-00019.safetensors",
|
206 |
+
"model.layers.14.mlp.experts.2.down_proj.weight": "model-00009-of-00019.safetensors",
|
207 |
+
"model.layers.14.mlp.experts.2.gate_proj.weight": "model-00009-of-00019.safetensors",
|
208 |
+
"model.layers.14.mlp.experts.2.up_proj.weight": "model-00009-of-00019.safetensors",
|
209 |
+
"model.layers.14.mlp.experts.3.down_proj.weight": "model-00009-of-00019.safetensors",
|
210 |
+
"model.layers.14.mlp.experts.3.gate_proj.weight": "model-00009-of-00019.safetensors",
|
211 |
+
"model.layers.14.mlp.experts.3.up_proj.weight": "model-00009-of-00019.safetensors",
|
212 |
+
"model.layers.14.mlp.experts.4.down_proj.weight": "model-00009-of-00019.safetensors",
|
213 |
+
"model.layers.14.mlp.experts.4.gate_proj.weight": "model-00009-of-00019.safetensors",
|
214 |
+
"model.layers.14.mlp.experts.4.up_proj.weight": "model-00009-of-00019.safetensors",
|
215 |
+
"model.layers.14.mlp.experts.5.down_proj.weight": "model-00009-of-00019.safetensors",
|
216 |
+
"model.layers.14.mlp.experts.5.gate_proj.weight": "model-00009-of-00019.safetensors",
|
217 |
+
"model.layers.14.mlp.experts.5.up_proj.weight": "model-00009-of-00019.safetensors",
|
218 |
+
"model.layers.14.mlp.experts.6.down_proj.weight": "model-00010-of-00019.safetensors",
|
219 |
+
"model.layers.14.mlp.experts.6.gate_proj.weight": "model-00009-of-00019.safetensors",
|
220 |
+
"model.layers.14.mlp.experts.6.up_proj.weight": "model-00010-of-00019.safetensors",
|
221 |
+
"model.layers.14.mlp.experts.7.down_proj.weight": "model-00010-of-00019.safetensors",
|
222 |
+
"model.layers.14.mlp.experts.7.gate_proj.weight": "model-00010-of-00019.safetensors",
|
223 |
+
"model.layers.14.mlp.experts.7.up_proj.weight": "model-00010-of-00019.safetensors",
|
224 |
+
"model.layers.14.mlp.gate.weight": "model-00009-of-00019.safetensors",
|
225 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00010-of-00019.safetensors",
|
226 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00009-of-00019.safetensors",
|
227 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00009-of-00019.safetensors",
|
228 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00009-of-00019.safetensors",
|
229 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00009-of-00019.safetensors",
|
230 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00009-of-00019.safetensors",
|
231 |
+
"model.layers.15.input_layernorm.weight": "model-00010-of-00019.safetensors",
|
232 |
+
"model.layers.15.mlp.experts.0.down_proj.weight": "model-00010-of-00019.safetensors",
|
233 |
+
"model.layers.15.mlp.experts.0.gate_proj.weight": "model-00010-of-00019.safetensors",
|
234 |
+
"model.layers.15.mlp.experts.0.up_proj.weight": "model-00010-of-00019.safetensors",
|
235 |
+
"model.layers.15.mlp.experts.1.down_proj.weight": "model-00010-of-00019.safetensors",
|
236 |
+
"model.layers.15.mlp.experts.1.gate_proj.weight": "model-00010-of-00019.safetensors",
|
237 |
+
"model.layers.15.mlp.experts.1.up_proj.weight": "model-00010-of-00019.safetensors",
|
238 |
+
"model.layers.15.mlp.experts.2.down_proj.weight": "model-00010-of-00019.safetensors",
|
239 |
+
"model.layers.15.mlp.experts.2.gate_proj.weight": "model-00010-of-00019.safetensors",
|
240 |
+
"model.layers.15.mlp.experts.2.up_proj.weight": "model-00010-of-00019.safetensors",
|
241 |
+
"model.layers.15.mlp.experts.3.down_proj.weight": "model-00010-of-00019.safetensors",
|
242 |
+
"model.layers.15.mlp.experts.3.gate_proj.weight": "model-00010-of-00019.safetensors",
|
243 |
+
"model.layers.15.mlp.experts.3.up_proj.weight": "model-00010-of-00019.safetensors",
|
244 |
+
"model.layers.15.mlp.experts.4.down_proj.weight": "model-00010-of-00019.safetensors",
|
245 |
+
"model.layers.15.mlp.experts.4.gate_proj.weight": "model-00010-of-00019.safetensors",
|
246 |
+
"model.layers.15.mlp.experts.4.up_proj.weight": "model-00010-of-00019.safetensors",
|
247 |
+
"model.layers.15.mlp.experts.5.down_proj.weight": "model-00010-of-00019.safetensors",
|
248 |
+
"model.layers.15.mlp.experts.5.gate_proj.weight": "model-00010-of-00019.safetensors",
|
249 |
+
"model.layers.15.mlp.experts.5.up_proj.weight": "model-00010-of-00019.safetensors",
|
250 |
+
"model.layers.15.mlp.experts.6.down_proj.weight": "model-00010-of-00019.safetensors",
|
251 |
+
"model.layers.15.mlp.experts.6.gate_proj.weight": "model-00010-of-00019.safetensors",
|
252 |
+
"model.layers.15.mlp.experts.6.up_proj.weight": "model-00010-of-00019.safetensors",
|
253 |
+
"model.layers.15.mlp.experts.7.down_proj.weight": "model-00010-of-00019.safetensors",
|
254 |
+
"model.layers.15.mlp.experts.7.gate_proj.weight": "model-00010-of-00019.safetensors",
|
255 |
+
"model.layers.15.mlp.experts.7.up_proj.weight": "model-00010-of-00019.safetensors",
|
256 |
+
"model.layers.15.mlp.gate.weight": "model-00010-of-00019.safetensors",
|
257 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00010-of-00019.safetensors",
|
258 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00010-of-00019.safetensors",
|
259 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00010-of-00019.safetensors",
|
260 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00010-of-00019.safetensors",
|
261 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00010-of-00019.safetensors",
|
262 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00010-of-00019.safetensors",
|
263 |
+
"model.layers.16.input_layernorm.weight": "model-00011-of-00019.safetensors",
|
264 |
+
"model.layers.16.mlp.experts.0.down_proj.weight": "model-00010-of-00019.safetensors",
|
265 |
+
"model.layers.16.mlp.experts.0.gate_proj.weight": "model-00010-of-00019.safetensors",
|
266 |
+
"model.layers.16.mlp.experts.0.up_proj.weight": "model-00010-of-00019.safetensors",
|
267 |
+
"model.layers.16.mlp.experts.1.down_proj.weight": "model-00010-of-00019.safetensors",
|
268 |
+
"model.layers.16.mlp.experts.1.gate_proj.weight": "model-00010-of-00019.safetensors",
|
269 |
+
"model.layers.16.mlp.experts.1.up_proj.weight": "model-00010-of-00019.safetensors",
|
270 |
+
"model.layers.16.mlp.experts.2.down_proj.weight": "model-00010-of-00019.safetensors",
|
271 |
+
"model.layers.16.mlp.experts.2.gate_proj.weight": "model-00010-of-00019.safetensors",
|
272 |
+
"model.layers.16.mlp.experts.2.up_proj.weight": "model-00010-of-00019.safetensors",
|
273 |
+
"model.layers.16.mlp.experts.3.down_proj.weight": "model-00010-of-00019.safetensors",
|
274 |
+
"model.layers.16.mlp.experts.3.gate_proj.weight": "model-00010-of-00019.safetensors",
|
275 |
+
"model.layers.16.mlp.experts.3.up_proj.weight": "model-00010-of-00019.safetensors",
|
276 |
+
"model.layers.16.mlp.experts.4.down_proj.weight": "model-00011-of-00019.safetensors",
|
277 |
+
"model.layers.16.mlp.experts.4.gate_proj.weight": "model-00011-of-00019.safetensors",
|
278 |
+
"model.layers.16.mlp.experts.4.up_proj.weight": "model-00011-of-00019.safetensors",
|
279 |
+
"model.layers.16.mlp.experts.5.down_proj.weight": "model-00011-of-00019.safetensors",
|
280 |
+
"model.layers.16.mlp.experts.5.gate_proj.weight": "model-00011-of-00019.safetensors",
|
281 |
+
"model.layers.16.mlp.experts.5.up_proj.weight": "model-00011-of-00019.safetensors",
|
282 |
+
"model.layers.16.mlp.experts.6.down_proj.weight": "model-00011-of-00019.safetensors",
|
283 |
+
"model.layers.16.mlp.experts.6.gate_proj.weight": "model-00011-of-00019.safetensors",
|
284 |
+
"model.layers.16.mlp.experts.6.up_proj.weight": "model-00011-of-00019.safetensors",
|
285 |
+
"model.layers.16.mlp.experts.7.down_proj.weight": "model-00011-of-00019.safetensors",
|
286 |
+
"model.layers.16.mlp.experts.7.gate_proj.weight": "model-00011-of-00019.safetensors",
|
287 |
+
"model.layers.16.mlp.experts.7.up_proj.weight": "model-00011-of-00019.safetensors",
|
288 |
+
"model.layers.16.mlp.gate.weight": "model-00010-of-00019.safetensors",
|
289 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
|
290 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00010-of-00019.safetensors",
|
291 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00010-of-00019.safetensors",
|
292 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00010-of-00019.safetensors",
|
293 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00010-of-00019.safetensors",
|
294 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00010-of-00019.safetensors",
|
295 |
+
"model.layers.17.input_layernorm.weight": "model-00011-of-00019.safetensors",
|
296 |
+
"model.layers.17.mlp.experts.0.down_proj.weight": "model-00011-of-00019.safetensors",
|
297 |
+
"model.layers.17.mlp.experts.0.gate_proj.weight": "model-00011-of-00019.safetensors",
|
298 |
+
"model.layers.17.mlp.experts.0.up_proj.weight": "model-00011-of-00019.safetensors",
|
299 |
+
"model.layers.17.mlp.experts.1.down_proj.weight": "model-00011-of-00019.safetensors",
|
300 |
+
"model.layers.17.mlp.experts.1.gate_proj.weight": "model-00011-of-00019.safetensors",
|
301 |
+
"model.layers.17.mlp.experts.1.up_proj.weight": "model-00011-of-00019.safetensors",
|
302 |
+
"model.layers.17.mlp.experts.2.down_proj.weight": "model-00011-of-00019.safetensors",
|
303 |
+
"model.layers.17.mlp.experts.2.gate_proj.weight": "model-00011-of-00019.safetensors",
|
304 |
+
"model.layers.17.mlp.experts.2.up_proj.weight": "model-00011-of-00019.safetensors",
|
305 |
+
"model.layers.17.mlp.experts.3.down_proj.weight": "model-00011-of-00019.safetensors",
|
306 |
+
"model.layers.17.mlp.experts.3.gate_proj.weight": "model-00011-of-00019.safetensors",
|
307 |
+
"model.layers.17.mlp.experts.3.up_proj.weight": "model-00011-of-00019.safetensors",
|
308 |
+
"model.layers.17.mlp.experts.4.down_proj.weight": "model-00011-of-00019.safetensors",
|
309 |
+
"model.layers.17.mlp.experts.4.gate_proj.weight": "model-00011-of-00019.safetensors",
|
310 |
+
"model.layers.17.mlp.experts.4.up_proj.weight": "model-00011-of-00019.safetensors",
|
311 |
+
"model.layers.17.mlp.experts.5.down_proj.weight": "model-00011-of-00019.safetensors",
|
312 |
+
"model.layers.17.mlp.experts.5.gate_proj.weight": "model-00011-of-00019.safetensors",
|
313 |
+
"model.layers.17.mlp.experts.5.up_proj.weight": "model-00011-of-00019.safetensors",
|
314 |
+
"model.layers.17.mlp.experts.6.down_proj.weight": "model-00011-of-00019.safetensors",
|
315 |
+
"model.layers.17.mlp.experts.6.gate_proj.weight": "model-00011-of-00019.safetensors",
|
316 |
+
"model.layers.17.mlp.experts.6.up_proj.weight": "model-00011-of-00019.safetensors",
|
317 |
+
"model.layers.17.mlp.experts.7.down_proj.weight": "model-00011-of-00019.safetensors",
|
318 |
+
"model.layers.17.mlp.experts.7.gate_proj.weight": "model-00011-of-00019.safetensors",
|
319 |
+
"model.layers.17.mlp.experts.7.up_proj.weight": "model-00011-of-00019.safetensors",
|
320 |
+
"model.layers.17.mlp.gate.weight": "model-00011-of-00019.safetensors",
|
321 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
|
322 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00011-of-00019.safetensors",
|
323 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
|
324 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
|
325 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
|
326 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
|
327 |
+
"model.layers.18.input_layernorm.weight": "model-00012-of-00019.safetensors",
|
328 |
+
"model.layers.18.mlp.experts.0.down_proj.weight": "model-00011-of-00019.safetensors",
|
329 |
+
"model.layers.18.mlp.experts.0.gate_proj.weight": "model-00011-of-00019.safetensors",
|
330 |
+
"model.layers.18.mlp.experts.0.up_proj.weight": "model-00011-of-00019.safetensors",
|
331 |
+
"model.layers.18.mlp.experts.1.down_proj.weight": "model-00012-of-00019.safetensors",
|
332 |
+
"model.layers.18.mlp.experts.1.gate_proj.weight": "model-00011-of-00019.safetensors",
|
333 |
+
"model.layers.18.mlp.experts.1.up_proj.weight": "model-00011-of-00019.safetensors",
|
334 |
+
"model.layers.18.mlp.experts.2.down_proj.weight": "model-00012-of-00019.safetensors",
|
335 |
+
"model.layers.18.mlp.experts.2.gate_proj.weight": "model-00012-of-00019.safetensors",
|
336 |
+
"model.layers.18.mlp.experts.2.up_proj.weight": "model-00012-of-00019.safetensors",
|
337 |
+
"model.layers.18.mlp.experts.3.down_proj.weight": "model-00012-of-00019.safetensors",
|
338 |
+
"model.layers.18.mlp.experts.3.gate_proj.weight": "model-00012-of-00019.safetensors",
|
339 |
+
"model.layers.18.mlp.experts.3.up_proj.weight": "model-00012-of-00019.safetensors",
|
340 |
+
"model.layers.18.mlp.experts.4.down_proj.weight": "model-00012-of-00019.safetensors",
|
341 |
+
"model.layers.18.mlp.experts.4.gate_proj.weight": "model-00012-of-00019.safetensors",
|
342 |
+
"model.layers.18.mlp.experts.4.up_proj.weight": "model-00012-of-00019.safetensors",
|
343 |
+
"model.layers.18.mlp.experts.5.down_proj.weight": "model-00012-of-00019.safetensors",
|
344 |
+
"model.layers.18.mlp.experts.5.gate_proj.weight": "model-00012-of-00019.safetensors",
|
345 |
+
"model.layers.18.mlp.experts.5.up_proj.weight": "model-00012-of-00019.safetensors",
|
346 |
+
"model.layers.18.mlp.experts.6.down_proj.weight": "model-00012-of-00019.safetensors",
|
347 |
+
"model.layers.18.mlp.experts.6.gate_proj.weight": "model-00012-of-00019.safetensors",
|
348 |
+
"model.layers.18.mlp.experts.6.up_proj.weight": "model-00012-of-00019.safetensors",
|
349 |
+
"model.layers.18.mlp.experts.7.down_proj.weight": "model-00012-of-00019.safetensors",
|
350 |
+
"model.layers.18.mlp.experts.7.gate_proj.weight": "model-00012-of-00019.safetensors",
|
351 |
+
"model.layers.18.mlp.experts.7.up_proj.weight": "model-00012-of-00019.safetensors",
|
352 |
+
"model.layers.18.mlp.gate.weight": "model-00011-of-00019.safetensors",
|
353 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00012-of-00019.safetensors",
|
354 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00011-of-00019.safetensors",
|
355 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
|
356 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
|
357 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
|
358 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
|
359 |
+
"model.layers.19.input_layernorm.weight": "model-00013-of-00019.safetensors",
|
360 |
+
"model.layers.19.mlp.experts.0.down_proj.weight": "model-00012-of-00019.safetensors",
|
361 |
+
"model.layers.19.mlp.experts.0.gate_proj.weight": "model-00012-of-00019.safetensors",
|
362 |
+
"model.layers.19.mlp.experts.0.up_proj.weight": "model-00012-of-00019.safetensors",
|
363 |
+
"model.layers.19.mlp.experts.1.down_proj.weight": "model-00012-of-00019.safetensors",
|
364 |
+
"model.layers.19.mlp.experts.1.gate_proj.weight": "model-00012-of-00019.safetensors",
|
365 |
+
"model.layers.19.mlp.experts.1.up_proj.weight": "model-00012-of-00019.safetensors",
|
366 |
+
"model.layers.19.mlp.experts.2.down_proj.weight": "model-00012-of-00019.safetensors",
|
367 |
+
"model.layers.19.mlp.experts.2.gate_proj.weight": "model-00012-of-00019.safetensors",
|
368 |
+
"model.layers.19.mlp.experts.2.up_proj.weight": "model-00012-of-00019.safetensors",
|
369 |
+
"model.layers.19.mlp.experts.3.down_proj.weight": "model-00012-of-00019.safetensors",
|
370 |
+
"model.layers.19.mlp.experts.3.gate_proj.weight": "model-00012-of-00019.safetensors",
|
371 |
+
"model.layers.19.mlp.experts.3.up_proj.weight": "model-00012-of-00019.safetensors",
|
372 |
+
"model.layers.19.mlp.experts.4.down_proj.weight": "model-00012-of-00019.safetensors",
|
373 |
+
"model.layers.19.mlp.experts.4.gate_proj.weight": "model-00012-of-00019.safetensors",
|
374 |
+
"model.layers.19.mlp.experts.4.up_proj.weight": "model-00012-of-00019.safetensors",
|
375 |
+
"model.layers.19.mlp.experts.5.down_proj.weight": "model-00012-of-00019.safetensors",
|
376 |
+
"model.layers.19.mlp.experts.5.gate_proj.weight": "model-00012-of-00019.safetensors",
|
377 |
+
"model.layers.19.mlp.experts.5.up_proj.weight": "model-00012-of-00019.safetensors",
|
378 |
+
"model.layers.19.mlp.experts.6.down_proj.weight": "model-00012-of-00019.safetensors",
|
379 |
+
"model.layers.19.mlp.experts.6.gate_proj.weight": "model-00012-of-00019.safetensors",
|
380 |
+
"model.layers.19.mlp.experts.6.up_proj.weight": "model-00012-of-00019.safetensors",
|
381 |
+
"model.layers.19.mlp.experts.7.down_proj.weight": "model-00013-of-00019.safetensors",
|
382 |
+
"model.layers.19.mlp.experts.7.gate_proj.weight": "model-00012-of-00019.safetensors",
|
383 |
+
"model.layers.19.mlp.experts.7.up_proj.weight": "model-00012-of-00019.safetensors",
|
384 |
+
"model.layers.19.mlp.gate.weight": "model-00012-of-00019.safetensors",
|
385 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
|
386 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00012-of-00019.safetensors",
|
387 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00012-of-00019.safetensors",
|
388 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00012-of-00019.safetensors",
|
389 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00012-of-00019.safetensors",
|
390 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00012-of-00019.safetensors",
|
391 |
+
"model.layers.2.input_layernorm.weight": "model-00003-of-00019.safetensors",
|
392 |
+
"model.layers.2.mlp.experts.0.down_proj.weight": "model-00002-of-00019.safetensors",
|
393 |
+
"model.layers.2.mlp.experts.0.gate_proj.weight": "model-00002-of-00019.safetensors",
|
394 |
+
"model.layers.2.mlp.experts.0.up_proj.weight": "model-00002-of-00019.safetensors",
|
395 |
+
"model.layers.2.mlp.experts.1.down_proj.weight": "model-00002-of-00019.safetensors",
|
396 |
+
"model.layers.2.mlp.experts.1.gate_proj.weight": "model-00002-of-00019.safetensors",
|
397 |
+
"model.layers.2.mlp.experts.1.up_proj.weight": "model-00002-of-00019.safetensors",
|
398 |
+
"model.layers.2.mlp.experts.2.down_proj.weight": "model-00002-of-00019.safetensors",
|
399 |
+
"model.layers.2.mlp.experts.2.gate_proj.weight": "model-00002-of-00019.safetensors",
|
400 |
+
"model.layers.2.mlp.experts.2.up_proj.weight": "model-00002-of-00019.safetensors",
|
401 |
+
"model.layers.2.mlp.experts.3.down_proj.weight": "model-00002-of-00019.safetensors",
|
402 |
+
"model.layers.2.mlp.experts.3.gate_proj.weight": "model-00002-of-00019.safetensors",
|
403 |
+
"model.layers.2.mlp.experts.3.up_proj.weight": "model-00002-of-00019.safetensors",
|
404 |
+
"model.layers.2.mlp.experts.4.down_proj.weight": "model-00002-of-00019.safetensors",
|
405 |
+
"model.layers.2.mlp.experts.4.gate_proj.weight": "model-00002-of-00019.safetensors",
|
406 |
+
"model.layers.2.mlp.experts.4.up_proj.weight": "model-00002-of-00019.safetensors",
|
407 |
+
"model.layers.2.mlp.experts.5.down_proj.weight": "model-00002-of-00019.safetensors",
|
408 |
+
"model.layers.2.mlp.experts.5.gate_proj.weight": "model-00002-of-00019.safetensors",
|
409 |
+
"model.layers.2.mlp.experts.5.up_proj.weight": "model-00002-of-00019.safetensors",
|
410 |
+
"model.layers.2.mlp.experts.6.down_proj.weight": "model-00003-of-00019.safetensors",
|
411 |
+
"model.layers.2.mlp.experts.6.gate_proj.weight": "model-00003-of-00019.safetensors",
|
412 |
+
"model.layers.2.mlp.experts.6.up_proj.weight": "model-00003-of-00019.safetensors",
|
413 |
+
"model.layers.2.mlp.experts.7.down_proj.weight": "model-00003-of-00019.safetensors",
|
414 |
+
"model.layers.2.mlp.experts.7.gate_proj.weight": "model-00003-of-00019.safetensors",
|
415 |
+
"model.layers.2.mlp.experts.7.up_proj.weight": "model-00003-of-00019.safetensors",
|
416 |
+
"model.layers.2.mlp.gate.weight": "model-00002-of-00019.safetensors",
|
417 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
|
418 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00002-of-00019.safetensors",
|
419 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00019.safetensors",
|
420 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
|
421 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00019.safetensors",
|
422 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00019.safetensors",
|
423 |
+
"model.layers.20.input_layernorm.weight": "model-00013-of-00019.safetensors",
|
424 |
+
"model.layers.20.mlp.experts.0.down_proj.weight": "model-00013-of-00019.safetensors",
|
425 |
+
"model.layers.20.mlp.experts.0.gate_proj.weight": "model-00013-of-00019.safetensors",
|
426 |
+
"model.layers.20.mlp.experts.0.up_proj.weight": "model-00013-of-00019.safetensors",
|
427 |
+
"model.layers.20.mlp.experts.1.down_proj.weight": "model-00013-of-00019.safetensors",
|
428 |
+
"model.layers.20.mlp.experts.1.gate_proj.weight": "model-00013-of-00019.safetensors",
|
429 |
+
"model.layers.20.mlp.experts.1.up_proj.weight": "model-00013-of-00019.safetensors",
|
430 |
+
"model.layers.20.mlp.experts.2.down_proj.weight": "model-00013-of-00019.safetensors",
|
431 |
+
"model.layers.20.mlp.experts.2.gate_proj.weight": "model-00013-of-00019.safetensors",
|
432 |
+
"model.layers.20.mlp.experts.2.up_proj.weight": "model-00013-of-00019.safetensors",
|
433 |
+
"model.layers.20.mlp.experts.3.down_proj.weight": "model-00013-of-00019.safetensors",
|
434 |
+
"model.layers.20.mlp.experts.3.gate_proj.weight": "model-00013-of-00019.safetensors",
|
435 |
+
"model.layers.20.mlp.experts.3.up_proj.weight": "model-00013-of-00019.safetensors",
|
436 |
+
"model.layers.20.mlp.experts.4.down_proj.weight": "model-00013-of-00019.safetensors",
|
437 |
+
"model.layers.20.mlp.experts.4.gate_proj.weight": "model-00013-of-00019.safetensors",
|
438 |
+
"model.layers.20.mlp.experts.4.up_proj.weight": "model-00013-of-00019.safetensors",
|
439 |
+
"model.layers.20.mlp.experts.5.down_proj.weight": "model-00013-of-00019.safetensors",
|
440 |
+
"model.layers.20.mlp.experts.5.gate_proj.weight": "model-00013-of-00019.safetensors",
|
441 |
+
"model.layers.20.mlp.experts.5.up_proj.weight": "model-00013-of-00019.safetensors",
|
442 |
+
"model.layers.20.mlp.experts.6.down_proj.weight": "model-00013-of-00019.safetensors",
|
443 |
+
"model.layers.20.mlp.experts.6.gate_proj.weight": "model-00013-of-00019.safetensors",
|
444 |
+
"model.layers.20.mlp.experts.6.up_proj.weight": "model-00013-of-00019.safetensors",
|
445 |
+
"model.layers.20.mlp.experts.7.down_proj.weight": "model-00013-of-00019.safetensors",
|
446 |
+
"model.layers.20.mlp.experts.7.gate_proj.weight": "model-00013-of-00019.safetensors",
|
447 |
+
"model.layers.20.mlp.experts.7.up_proj.weight": "model-00013-of-00019.safetensors",
|
448 |
+
"model.layers.20.mlp.gate.weight": "model-00013-of-00019.safetensors",
|
449 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
|
450 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00013-of-00019.safetensors",
|
451 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
|
452 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
|
453 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
|
454 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
|
455 |
+
"model.layers.21.input_layernorm.weight": "model-00014-of-00019.safetensors",
|
456 |
+
"model.layers.21.mlp.experts.0.down_proj.weight": "model-00013-of-00019.safetensors",
|
457 |
+
"model.layers.21.mlp.experts.0.gate_proj.weight": "model-00013-of-00019.safetensors",
|
458 |
+
"model.layers.21.mlp.experts.0.up_proj.weight": "model-00013-of-00019.safetensors",
|
459 |
+
"model.layers.21.mlp.experts.1.down_proj.weight": "model-00013-of-00019.safetensors",
|
460 |
+
"model.layers.21.mlp.experts.1.gate_proj.weight": "model-00013-of-00019.safetensors",
|
461 |
+
"model.layers.21.mlp.experts.1.up_proj.weight": "model-00013-of-00019.safetensors",
|
462 |
+
"model.layers.21.mlp.experts.2.down_proj.weight": "model-00013-of-00019.safetensors",
|
463 |
+
"model.layers.21.mlp.experts.2.gate_proj.weight": "model-00013-of-00019.safetensors",
|
464 |
+
"model.layers.21.mlp.experts.2.up_proj.weight": "model-00013-of-00019.safetensors",
|
465 |
+
"model.layers.21.mlp.experts.3.down_proj.weight": "model-00013-of-00019.safetensors",
|
466 |
+
"model.layers.21.mlp.experts.3.gate_proj.weight": "model-00013-of-00019.safetensors",
|
467 |
+
"model.layers.21.mlp.experts.3.up_proj.weight": "model-00013-of-00019.safetensors",
|
468 |
+
"model.layers.21.mlp.experts.4.down_proj.weight": "model-00013-of-00019.safetensors",
|
469 |
+
"model.layers.21.mlp.experts.4.gate_proj.weight": "model-00013-of-00019.safetensors",
|
470 |
+
"model.layers.21.mlp.experts.4.up_proj.weight": "model-00013-of-00019.safetensors",
|
471 |
+
"model.layers.21.mlp.experts.5.down_proj.weight": "model-00014-of-00019.safetensors",
|
472 |
+
"model.layers.21.mlp.experts.5.gate_proj.weight": "model-00013-of-00019.safetensors",
|
473 |
+
"model.layers.21.mlp.experts.5.up_proj.weight": "model-00014-of-00019.safetensors",
|
474 |
+
"model.layers.21.mlp.experts.6.down_proj.weight": "model-00014-of-00019.safetensors",
|
475 |
+
"model.layers.21.mlp.experts.6.gate_proj.weight": "model-00014-of-00019.safetensors",
|
476 |
+
"model.layers.21.mlp.experts.6.up_proj.weight": "model-00014-of-00019.safetensors",
|
477 |
+
"model.layers.21.mlp.experts.7.down_proj.weight": "model-00014-of-00019.safetensors",
|
478 |
+
"model.layers.21.mlp.experts.7.gate_proj.weight": "model-00014-of-00019.safetensors",
|
479 |
+
"model.layers.21.mlp.experts.7.up_proj.weight": "model-00014-of-00019.safetensors",
|
480 |
+
"model.layers.21.mlp.gate.weight": "model-00013-of-00019.safetensors",
|
481 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00014-of-00019.safetensors",
|
482 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00013-of-00019.safetensors",
|
483 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
|
484 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
|
485 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
|
486 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
|
487 |
+
"model.layers.22.input_layernorm.weight": "model-00014-of-00019.safetensors",
|
488 |
+
"model.layers.22.mlp.experts.0.down_proj.weight": "model-00014-of-00019.safetensors",
|
489 |
+
"model.layers.22.mlp.experts.0.gate_proj.weight": "model-00014-of-00019.safetensors",
|
490 |
+
"model.layers.22.mlp.experts.0.up_proj.weight": "model-00014-of-00019.safetensors",
|
491 |
+
"model.layers.22.mlp.experts.1.down_proj.weight": "model-00014-of-00019.safetensors",
|
492 |
+
"model.layers.22.mlp.experts.1.gate_proj.weight": "model-00014-of-00019.safetensors",
|
493 |
+
"model.layers.22.mlp.experts.1.up_proj.weight": "model-00014-of-00019.safetensors",
|
494 |
+
"model.layers.22.mlp.experts.2.down_proj.weight": "model-00014-of-00019.safetensors",
|
495 |
+
"model.layers.22.mlp.experts.2.gate_proj.weight": "model-00014-of-00019.safetensors",
|
496 |
+
"model.layers.22.mlp.experts.2.up_proj.weight": "model-00014-of-00019.safetensors",
|
497 |
+
"model.layers.22.mlp.experts.3.down_proj.weight": "model-00014-of-00019.safetensors",
|
498 |
+
"model.layers.22.mlp.experts.3.gate_proj.weight": "model-00014-of-00019.safetensors",
|
499 |
+
"model.layers.22.mlp.experts.3.up_proj.weight": "model-00014-of-00019.safetensors",
|
500 |
+
"model.layers.22.mlp.experts.4.down_proj.weight": "model-00014-of-00019.safetensors",
|
501 |
+
"model.layers.22.mlp.experts.4.gate_proj.weight": "model-00014-of-00019.safetensors",
|
502 |
+
"model.layers.22.mlp.experts.4.up_proj.weight": "model-00014-of-00019.safetensors",
|
503 |
+
"model.layers.22.mlp.experts.5.down_proj.weight": "model-00014-of-00019.safetensors",
|
504 |
+
"model.layers.22.mlp.experts.5.gate_proj.weight": "model-00014-of-00019.safetensors",
|
505 |
+
"model.layers.22.mlp.experts.5.up_proj.weight": "model-00014-of-00019.safetensors",
|
506 |
+
"model.layers.22.mlp.experts.6.down_proj.weight": "model-00014-of-00019.safetensors",
|
507 |
+
"model.layers.22.mlp.experts.6.gate_proj.weight": "model-00014-of-00019.safetensors",
|
508 |
+
"model.layers.22.mlp.experts.6.up_proj.weight": "model-00014-of-00019.safetensors",
|
509 |
+
"model.layers.22.mlp.experts.7.down_proj.weight": "model-00014-of-00019.safetensors",
|
510 |
+
"model.layers.22.mlp.experts.7.gate_proj.weight": "model-00014-of-00019.safetensors",
|
511 |
+
"model.layers.22.mlp.experts.7.up_proj.weight": "model-00014-of-00019.safetensors",
|
512 |
+
"model.layers.22.mlp.gate.weight": "model-00014-of-00019.safetensors",
|
513 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00014-of-00019.safetensors",
|
514 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00014-of-00019.safetensors",
|
515 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00014-of-00019.safetensors",
|
516 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00014-of-00019.safetensors",
|
517 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00014-of-00019.safetensors",
|
518 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00014-of-00019.safetensors",
|
519 |
+
"model.layers.23.input_layernorm.weight": "model-00015-of-00019.safetensors",
|
520 |
+
"model.layers.23.mlp.experts.0.down_proj.weight": "model-00014-of-00019.safetensors",
|
521 |
+
"model.layers.23.mlp.experts.0.gate_proj.weight": "model-00014-of-00019.safetensors",
|
522 |
+
"model.layers.23.mlp.experts.0.up_proj.weight": "model-00014-of-00019.safetensors",
|
523 |
+
"model.layers.23.mlp.experts.1.down_proj.weight": "model-00014-of-00019.safetensors",
|
524 |
+
"model.layers.23.mlp.experts.1.gate_proj.weight": "model-00014-of-00019.safetensors",
|
525 |
+
"model.layers.23.mlp.experts.1.up_proj.weight": "model-00014-of-00019.safetensors",
|
526 |
+
"model.layers.23.mlp.experts.2.down_proj.weight": "model-00014-of-00019.safetensors",
|
527 |
+
"model.layers.23.mlp.experts.2.gate_proj.weight": "model-00014-of-00019.safetensors",
|
528 |
+
"model.layers.23.mlp.experts.2.up_proj.weight": "model-00014-of-00019.safetensors",
|
529 |
+
"model.layers.23.mlp.experts.3.down_proj.weight": "model-00015-of-00019.safetensors",
|
530 |
+
"model.layers.23.mlp.experts.3.gate_proj.weight": "model-00015-of-00019.safetensors",
|
531 |
+
"model.layers.23.mlp.experts.3.up_proj.weight": "model-00015-of-00019.safetensors",
|
532 |
+
"model.layers.23.mlp.experts.4.down_proj.weight": "model-00015-of-00019.safetensors",
|
533 |
+
"model.layers.23.mlp.experts.4.gate_proj.weight": "model-00015-of-00019.safetensors",
|
534 |
+
"model.layers.23.mlp.experts.4.up_proj.weight": "model-00015-of-00019.safetensors",
|
535 |
+
"model.layers.23.mlp.experts.5.down_proj.weight": "model-00015-of-00019.safetensors",
|
536 |
+
"model.layers.23.mlp.experts.5.gate_proj.weight": "model-00015-of-00019.safetensors",
|
537 |
+
"model.layers.23.mlp.experts.5.up_proj.weight": "model-00015-of-00019.safetensors",
|
538 |
+
"model.layers.23.mlp.experts.6.down_proj.weight": "model-00015-of-00019.safetensors",
|
539 |
+
"model.layers.23.mlp.experts.6.gate_proj.weight": "model-00015-of-00019.safetensors",
|
540 |
+
"model.layers.23.mlp.experts.6.up_proj.weight": "model-00015-of-00019.safetensors",
|
541 |
+
"model.layers.23.mlp.experts.7.down_proj.weight": "model-00015-of-00019.safetensors",
|
542 |
+
"model.layers.23.mlp.experts.7.gate_proj.weight": "model-00015-of-00019.safetensors",
|
543 |
+
"model.layers.23.mlp.experts.7.up_proj.weight": "model-00015-of-00019.safetensors",
|
544 |
+
"model.layers.23.mlp.gate.weight": "model-00014-of-00019.safetensors",
|
545 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
|
546 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00014-of-00019.safetensors",
|
547 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00014-of-00019.safetensors",
|
548 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00014-of-00019.safetensors",
|
549 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00014-of-00019.safetensors",
|
550 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00014-of-00019.safetensors",
|
551 |
+
"model.layers.24.input_layernorm.weight": "model-00015-of-00019.safetensors",
|
552 |
+
"model.layers.24.mlp.experts.0.down_proj.weight": "model-00015-of-00019.safetensors",
|
553 |
+
"model.layers.24.mlp.experts.0.gate_proj.weight": "model-00015-of-00019.safetensors",
|
554 |
+
"model.layers.24.mlp.experts.0.up_proj.weight": "model-00015-of-00019.safetensors",
|
555 |
+
"model.layers.24.mlp.experts.1.down_proj.weight": "model-00015-of-00019.safetensors",
|
556 |
+
"model.layers.24.mlp.experts.1.gate_proj.weight": "model-00015-of-00019.safetensors",
|
557 |
+
"model.layers.24.mlp.experts.1.up_proj.weight": "model-00015-of-00019.safetensors",
|
558 |
+
"model.layers.24.mlp.experts.2.down_proj.weight": "model-00015-of-00019.safetensors",
|
559 |
+
"model.layers.24.mlp.experts.2.gate_proj.weight": "model-00015-of-00019.safetensors",
|
560 |
+
"model.layers.24.mlp.experts.2.up_proj.weight": "model-00015-of-00019.safetensors",
|
561 |
+
"model.layers.24.mlp.experts.3.down_proj.weight": "model-00015-of-00019.safetensors",
|
562 |
+
"model.layers.24.mlp.experts.3.gate_proj.weight": "model-00015-of-00019.safetensors",
|
563 |
+
"model.layers.24.mlp.experts.3.up_proj.weight": "model-00015-of-00019.safetensors",
|
564 |
+
"model.layers.24.mlp.experts.4.down_proj.weight": "model-00015-of-00019.safetensors",
|
565 |
+
"model.layers.24.mlp.experts.4.gate_proj.weight": "model-00015-of-00019.safetensors",
|
566 |
+
"model.layers.24.mlp.experts.4.up_proj.weight": "model-00015-of-00019.safetensors",
|
567 |
+
"model.layers.24.mlp.experts.5.down_proj.weight": "model-00015-of-00019.safetensors",
|
568 |
+
"model.layers.24.mlp.experts.5.gate_proj.weight": "model-00015-of-00019.safetensors",
|
569 |
+
"model.layers.24.mlp.experts.5.up_proj.weight": "model-00015-of-00019.safetensors",
|
570 |
+
"model.layers.24.mlp.experts.6.down_proj.weight": "model-00015-of-00019.safetensors",
|
571 |
+
"model.layers.24.mlp.experts.6.gate_proj.weight": "model-00015-of-00019.safetensors",
|
572 |
+
"model.layers.24.mlp.experts.6.up_proj.weight": "model-00015-of-00019.safetensors",
|
573 |
+
"model.layers.24.mlp.experts.7.down_proj.weight": "model-00015-of-00019.safetensors",
|
574 |
+
"model.layers.24.mlp.experts.7.gate_proj.weight": "model-00015-of-00019.safetensors",
|
575 |
+
"model.layers.24.mlp.experts.7.up_proj.weight": "model-00015-of-00019.safetensors",
|
576 |
+
"model.layers.24.mlp.gate.weight": "model-00015-of-00019.safetensors",
|
577 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
|
578 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00015-of-00019.safetensors",
|
579 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
|
580 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
|
581 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
|
582 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
|
583 |
+
"model.layers.25.input_layernorm.weight": "model-00016-of-00019.safetensors",
|
584 |
+
"model.layers.25.mlp.experts.0.down_proj.weight": "model-00016-of-00019.safetensors",
|
585 |
+
"model.layers.25.mlp.experts.0.gate_proj.weight": "model-00015-of-00019.safetensors",
|
586 |
+
"model.layers.25.mlp.experts.0.up_proj.weight": "model-00015-of-00019.safetensors",
|
587 |
+
"model.layers.25.mlp.experts.1.down_proj.weight": "model-00016-of-00019.safetensors",
|
588 |
+
"model.layers.25.mlp.experts.1.gate_proj.weight": "model-00016-of-00019.safetensors",
|
589 |
+
"model.layers.25.mlp.experts.1.up_proj.weight": "model-00016-of-00019.safetensors",
|
590 |
+
"model.layers.25.mlp.experts.2.down_proj.weight": "model-00016-of-00019.safetensors",
|
591 |
+
"model.layers.25.mlp.experts.2.gate_proj.weight": "model-00016-of-00019.safetensors",
|
592 |
+
"model.layers.25.mlp.experts.2.up_proj.weight": "model-00016-of-00019.safetensors",
|
593 |
+
"model.layers.25.mlp.experts.3.down_proj.weight": "model-00016-of-00019.safetensors",
|
594 |
+
"model.layers.25.mlp.experts.3.gate_proj.weight": "model-00016-of-00019.safetensors",
|
595 |
+
"model.layers.25.mlp.experts.3.up_proj.weight": "model-00016-of-00019.safetensors",
|
596 |
+
"model.layers.25.mlp.experts.4.down_proj.weight": "model-00016-of-00019.safetensors",
|
597 |
+
"model.layers.25.mlp.experts.4.gate_proj.weight": "model-00016-of-00019.safetensors",
|
598 |
+
"model.layers.25.mlp.experts.4.up_proj.weight": "model-00016-of-00019.safetensors",
|
599 |
+
"model.layers.25.mlp.experts.5.down_proj.weight": "model-00016-of-00019.safetensors",
|
600 |
+
"model.layers.25.mlp.experts.5.gate_proj.weight": "model-00016-of-00019.safetensors",
|
601 |
+
"model.layers.25.mlp.experts.5.up_proj.weight": "model-00016-of-00019.safetensors",
|
602 |
+
"model.layers.25.mlp.experts.6.down_proj.weight": "model-00016-of-00019.safetensors",
|
603 |
+
"model.layers.25.mlp.experts.6.gate_proj.weight": "model-00016-of-00019.safetensors",
|
604 |
+
"model.layers.25.mlp.experts.6.up_proj.weight": "model-00016-of-00019.safetensors",
|
605 |
+
"model.layers.25.mlp.experts.7.down_proj.weight": "model-00016-of-00019.safetensors",
|
606 |
+
"model.layers.25.mlp.experts.7.gate_proj.weight": "model-00016-of-00019.safetensors",
|
607 |
+
"model.layers.25.mlp.experts.7.up_proj.weight": "model-00016-of-00019.safetensors",
|
608 |
+
"model.layers.25.mlp.gate.weight": "model-00015-of-00019.safetensors",
|
609 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00016-of-00019.safetensors",
|
610 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00015-of-00019.safetensors",
|
611 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
|
612 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
|
613 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
|
614 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
|
615 |
+
"model.layers.26.input_layernorm.weight": "model-00017-of-00019.safetensors",
|
616 |
+
"model.layers.26.mlp.experts.0.down_proj.weight": "model-00016-of-00019.safetensors",
|
617 |
+
"model.layers.26.mlp.experts.0.gate_proj.weight": "model-00016-of-00019.safetensors",
|
618 |
+
"model.layers.26.mlp.experts.0.up_proj.weight": "model-00016-of-00019.safetensors",
|
619 |
+
"model.layers.26.mlp.experts.1.down_proj.weight": "model-00016-of-00019.safetensors",
|
620 |
+
"model.layers.26.mlp.experts.1.gate_proj.weight": "model-00016-of-00019.safetensors",
|
621 |
+
"model.layers.26.mlp.experts.1.up_proj.weight": "model-00016-of-00019.safetensors",
|
622 |
+
"model.layers.26.mlp.experts.2.down_proj.weight": "model-00016-of-00019.safetensors",
|
623 |
+
"model.layers.26.mlp.experts.2.gate_proj.weight": "model-00016-of-00019.safetensors",
|
624 |
+
"model.layers.26.mlp.experts.2.up_proj.weight": "model-00016-of-00019.safetensors",
|
625 |
+
"model.layers.26.mlp.experts.3.down_proj.weight": "model-00016-of-00019.safetensors",
|
626 |
+
"model.layers.26.mlp.experts.3.gate_proj.weight": "model-00016-of-00019.safetensors",
|
627 |
+
"model.layers.26.mlp.experts.3.up_proj.weight": "model-00016-of-00019.safetensors",
|
628 |
+
"model.layers.26.mlp.experts.4.down_proj.weight": "model-00016-of-00019.safetensors",
|
629 |
+
"model.layers.26.mlp.experts.4.gate_proj.weight": "model-00016-of-00019.safetensors",
|
630 |
+
"model.layers.26.mlp.experts.4.up_proj.weight": "model-00016-of-00019.safetensors",
|
631 |
+
"model.layers.26.mlp.experts.5.down_proj.weight": "model-00016-of-00019.safetensors",
|
632 |
+
"model.layers.26.mlp.experts.5.gate_proj.weight": "model-00016-of-00019.safetensors",
|
633 |
+
"model.layers.26.mlp.experts.5.up_proj.weight": "model-00016-of-00019.safetensors",
|
634 |
+
"model.layers.26.mlp.experts.6.down_proj.weight": "model-00017-of-00019.safetensors",
|
635 |
+
"model.layers.26.mlp.experts.6.gate_proj.weight": "model-00016-of-00019.safetensors",
|
636 |
+
"model.layers.26.mlp.experts.6.up_proj.weight": "model-00016-of-00019.safetensors",
|
637 |
+
"model.layers.26.mlp.experts.7.down_proj.weight": "model-00017-of-00019.safetensors",
|
638 |
+
"model.layers.26.mlp.experts.7.gate_proj.weight": "model-00017-of-00019.safetensors",
|
639 |
+
"model.layers.26.mlp.experts.7.up_proj.weight": "model-00017-of-00019.safetensors",
|
640 |
+
"model.layers.26.mlp.gate.weight": "model-00016-of-00019.safetensors",
|
641 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00017-of-00019.safetensors",
|
642 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00016-of-00019.safetensors",
|
643 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00016-of-00019.safetensors",
|
644 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00016-of-00019.safetensors",
|
645 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00016-of-00019.safetensors",
|
646 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00016-of-00019.safetensors",
|
647 |
+
"model.layers.27.input_layernorm.weight": "model-00017-of-00019.safetensors",
|
648 |
+
"model.layers.27.mlp.experts.0.down_proj.weight": "model-00017-of-00019.safetensors",
|
649 |
+
"model.layers.27.mlp.experts.0.gate_proj.weight": "model-00017-of-00019.safetensors",
|
650 |
+
"model.layers.27.mlp.experts.0.up_proj.weight": "model-00017-of-00019.safetensors",
|
651 |
+
"model.layers.27.mlp.experts.1.down_proj.weight": "model-00017-of-00019.safetensors",
|
652 |
+
"model.layers.27.mlp.experts.1.gate_proj.weight": "model-00017-of-00019.safetensors",
|
653 |
+
"model.layers.27.mlp.experts.1.up_proj.weight": "model-00017-of-00019.safetensors",
|
654 |
+
"model.layers.27.mlp.experts.2.down_proj.weight": "model-00017-of-00019.safetensors",
|
655 |
+
"model.layers.27.mlp.experts.2.gate_proj.weight": "model-00017-of-00019.safetensors",
|
656 |
+
"model.layers.27.mlp.experts.2.up_proj.weight": "model-00017-of-00019.safetensors",
|
657 |
+
"model.layers.27.mlp.experts.3.down_proj.weight": "model-00017-of-00019.safetensors",
|
658 |
+
"model.layers.27.mlp.experts.3.gate_proj.weight": "model-00017-of-00019.safetensors",
|
659 |
+
"model.layers.27.mlp.experts.3.up_proj.weight": "model-00017-of-00019.safetensors",
|
660 |
+
"model.layers.27.mlp.experts.4.down_proj.weight": "model-00017-of-00019.safetensors",
|
661 |
+
"model.layers.27.mlp.experts.4.gate_proj.weight": "model-00017-of-00019.safetensors",
|
662 |
+
"model.layers.27.mlp.experts.4.up_proj.weight": "model-00017-of-00019.safetensors",
|
663 |
+
"model.layers.27.mlp.experts.5.down_proj.weight": "model-00017-of-00019.safetensors",
|
664 |
+
"model.layers.27.mlp.experts.5.gate_proj.weight": "model-00017-of-00019.safetensors",
|
665 |
+
"model.layers.27.mlp.experts.5.up_proj.weight": "model-00017-of-00019.safetensors",
|
666 |
+
"model.layers.27.mlp.experts.6.down_proj.weight": "model-00017-of-00019.safetensors",
|
667 |
+
"model.layers.27.mlp.experts.6.gate_proj.weight": "model-00017-of-00019.safetensors",
|
668 |
+
"model.layers.27.mlp.experts.6.up_proj.weight": "model-00017-of-00019.safetensors",
|
669 |
+
"model.layers.27.mlp.experts.7.down_proj.weight": "model-00017-of-00019.safetensors",
|
670 |
+
"model.layers.27.mlp.experts.7.gate_proj.weight": "model-00017-of-00019.safetensors",
|
671 |
+
"model.layers.27.mlp.experts.7.up_proj.weight": "model-00017-of-00019.safetensors",
|
672 |
+
"model.layers.27.mlp.gate.weight": "model-00017-of-00019.safetensors",
|
673 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00017-of-00019.safetensors",
|
674 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00017-of-00019.safetensors",
|
675 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00017-of-00019.safetensors",
|
676 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00017-of-00019.safetensors",
|
677 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00017-of-00019.safetensors",
|
678 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00017-of-00019.safetensors",
|
679 |
+
"model.layers.28.input_layernorm.weight": "model-00018-of-00019.safetensors",
|
680 |
+
"model.layers.28.mlp.experts.0.down_proj.weight": "model-00017-of-00019.safetensors",
|
681 |
+
"model.layers.28.mlp.experts.0.gate_proj.weight": "model-00017-of-00019.safetensors",
|
682 |
+
"model.layers.28.mlp.experts.0.up_proj.weight": "model-00017-of-00019.safetensors",
|
683 |
+
"model.layers.28.mlp.experts.1.down_proj.weight": "model-00017-of-00019.safetensors",
|
684 |
+
"model.layers.28.mlp.experts.1.gate_proj.weight": "model-00017-of-00019.safetensors",
|
685 |
+
"model.layers.28.mlp.experts.1.up_proj.weight": "model-00017-of-00019.safetensors",
|
686 |
+
"model.layers.28.mlp.experts.2.down_proj.weight": "model-00017-of-00019.safetensors",
|
687 |
+
"model.layers.28.mlp.experts.2.gate_proj.weight": "model-00017-of-00019.safetensors",
|
688 |
+
"model.layers.28.mlp.experts.2.up_proj.weight": "model-00017-of-00019.safetensors",
|
689 |
+
"model.layers.28.mlp.experts.3.down_proj.weight": "model-00017-of-00019.safetensors",
|
690 |
+
"model.layers.28.mlp.experts.3.gate_proj.weight": "model-00017-of-00019.safetensors",
|
691 |
+
"model.layers.28.mlp.experts.3.up_proj.weight": "model-00017-of-00019.safetensors",
|
692 |
+
"model.layers.28.mlp.experts.4.down_proj.weight": "model-00018-of-00019.safetensors",
|
693 |
+
"model.layers.28.mlp.experts.4.gate_proj.weight": "model-00017-of-00019.safetensors",
|
694 |
+
"model.layers.28.mlp.experts.4.up_proj.weight": "model-00018-of-00019.safetensors",
|
695 |
+
"model.layers.28.mlp.experts.5.down_proj.weight": "model-00018-of-00019.safetensors",
|
696 |
+
"model.layers.28.mlp.experts.5.gate_proj.weight": "model-00018-of-00019.safetensors",
|
697 |
+
"model.layers.28.mlp.experts.5.up_proj.weight": "model-00018-of-00019.safetensors",
|
698 |
+
"model.layers.28.mlp.experts.6.down_proj.weight": "model-00018-of-00019.safetensors",
|
699 |
+
"model.layers.28.mlp.experts.6.gate_proj.weight": "model-00018-of-00019.safetensors",
|
700 |
+
"model.layers.28.mlp.experts.6.up_proj.weight": "model-00018-of-00019.safetensors",
|
701 |
+
"model.layers.28.mlp.experts.7.down_proj.weight": "model-00018-of-00019.safetensors",
|
702 |
+
"model.layers.28.mlp.experts.7.gate_proj.weight": "model-00018-of-00019.safetensors",
|
703 |
+
"model.layers.28.mlp.experts.7.up_proj.weight": "model-00018-of-00019.safetensors",
|
704 |
+
"model.layers.28.mlp.gate.weight": "model-00017-of-00019.safetensors",
|
705 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
|
706 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00017-of-00019.safetensors",
|
707 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00017-of-00019.safetensors",
|
708 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00017-of-00019.safetensors",
|
709 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00017-of-00019.safetensors",
|
710 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00017-of-00019.safetensors",
|
711 |
+
"model.layers.29.input_layernorm.weight": "model-00018-of-00019.safetensors",
|
712 |
+
"model.layers.29.mlp.experts.0.down_proj.weight": "model-00018-of-00019.safetensors",
|
713 |
+
"model.layers.29.mlp.experts.0.gate_proj.weight": "model-00018-of-00019.safetensors",
|
714 |
+
"model.layers.29.mlp.experts.0.up_proj.weight": "model-00018-of-00019.safetensors",
|
715 |
+
"model.layers.29.mlp.experts.1.down_proj.weight": "model-00018-of-00019.safetensors",
|
716 |
+
"model.layers.29.mlp.experts.1.gate_proj.weight": "model-00018-of-00019.safetensors",
|
717 |
+
"model.layers.29.mlp.experts.1.up_proj.weight": "model-00018-of-00019.safetensors",
|
718 |
+
"model.layers.29.mlp.experts.2.down_proj.weight": "model-00018-of-00019.safetensors",
|
719 |
+
"model.layers.29.mlp.experts.2.gate_proj.weight": "model-00018-of-00019.safetensors",
|
720 |
+
"model.layers.29.mlp.experts.2.up_proj.weight": "model-00018-of-00019.safetensors",
|
721 |
+
"model.layers.29.mlp.experts.3.down_proj.weight": "model-00018-of-00019.safetensors",
|
722 |
+
"model.layers.29.mlp.experts.3.gate_proj.weight": "model-00018-of-00019.safetensors",
|
723 |
+
"model.layers.29.mlp.experts.3.up_proj.weight": "model-00018-of-00019.safetensors",
|
724 |
+
"model.layers.29.mlp.experts.4.down_proj.weight": "model-00018-of-00019.safetensors",
|
725 |
+
"model.layers.29.mlp.experts.4.gate_proj.weight": "model-00018-of-00019.safetensors",
|
726 |
+
"model.layers.29.mlp.experts.4.up_proj.weight": "model-00018-of-00019.safetensors",
|
727 |
+
"model.layers.29.mlp.experts.5.down_proj.weight": "model-00018-of-00019.safetensors",
|
728 |
+
"model.layers.29.mlp.experts.5.gate_proj.weight": "model-00018-of-00019.safetensors",
|
729 |
+
"model.layers.29.mlp.experts.5.up_proj.weight": "model-00018-of-00019.safetensors",
|
730 |
+
"model.layers.29.mlp.experts.6.down_proj.weight": "model-00018-of-00019.safetensors",
|
731 |
+
"model.layers.29.mlp.experts.6.gate_proj.weight": "model-00018-of-00019.safetensors",
|
732 |
+
"model.layers.29.mlp.experts.6.up_proj.weight": "model-00018-of-00019.safetensors",
|
733 |
+
"model.layers.29.mlp.experts.7.down_proj.weight": "model-00018-of-00019.safetensors",
|
734 |
+
"model.layers.29.mlp.experts.7.gate_proj.weight": "model-00018-of-00019.safetensors",
|
735 |
+
"model.layers.29.mlp.experts.7.up_proj.weight": "model-00018-of-00019.safetensors",
|
736 |
+
"model.layers.29.mlp.gate.weight": "model-00018-of-00019.safetensors",
|
737 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
|
738 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00018-of-00019.safetensors",
|
739 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
|
740 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
|
741 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
|
742 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
|
743 |
+
"model.layers.3.input_layernorm.weight": "model-00003-of-00019.safetensors",
|
744 |
+
"model.layers.3.mlp.experts.0.down_proj.weight": "model-00003-of-00019.safetensors",
|
745 |
+
"model.layers.3.mlp.experts.0.gate_proj.weight": "model-00003-of-00019.safetensors",
|
746 |
+
"model.layers.3.mlp.experts.0.up_proj.weight": "model-00003-of-00019.safetensors",
|
747 |
+
"model.layers.3.mlp.experts.1.down_proj.weight": "model-00003-of-00019.safetensors",
|
748 |
+
"model.layers.3.mlp.experts.1.gate_proj.weight": "model-00003-of-00019.safetensors",
|
749 |
+
"model.layers.3.mlp.experts.1.up_proj.weight": "model-00003-of-00019.safetensors",
|
750 |
+
"model.layers.3.mlp.experts.2.down_proj.weight": "model-00003-of-00019.safetensors",
|
751 |
+
"model.layers.3.mlp.experts.2.gate_proj.weight": "model-00003-of-00019.safetensors",
|
752 |
+
"model.layers.3.mlp.experts.2.up_proj.weight": "model-00003-of-00019.safetensors",
|
753 |
+
"model.layers.3.mlp.experts.3.down_proj.weight": "model-00003-of-00019.safetensors",
|
754 |
+
"model.layers.3.mlp.experts.3.gate_proj.weight": "model-00003-of-00019.safetensors",
|
755 |
+
"model.layers.3.mlp.experts.3.up_proj.weight": "model-00003-of-00019.safetensors",
|
756 |
+
"model.layers.3.mlp.experts.4.down_proj.weight": "model-00003-of-00019.safetensors",
|
757 |
+
"model.layers.3.mlp.experts.4.gate_proj.weight": "model-00003-of-00019.safetensors",
|
758 |
+
"model.layers.3.mlp.experts.4.up_proj.weight": "model-00003-of-00019.safetensors",
|
759 |
+
"model.layers.3.mlp.experts.5.down_proj.weight": "model-00003-of-00019.safetensors",
|
760 |
+
"model.layers.3.mlp.experts.5.gate_proj.weight": "model-00003-of-00019.safetensors",
|
761 |
+
"model.layers.3.mlp.experts.5.up_proj.weight": "model-00003-of-00019.safetensors",
|
762 |
+
"model.layers.3.mlp.experts.6.down_proj.weight": "model-00003-of-00019.safetensors",
|
763 |
+
"model.layers.3.mlp.experts.6.gate_proj.weight": "model-00003-of-00019.safetensors",
|
764 |
+
"model.layers.3.mlp.experts.6.up_proj.weight": "model-00003-of-00019.safetensors",
|
765 |
+
"model.layers.3.mlp.experts.7.down_proj.weight": "model-00003-of-00019.safetensors",
|
766 |
+
"model.layers.3.mlp.experts.7.gate_proj.weight": "model-00003-of-00019.safetensors",
|
767 |
+
"model.layers.3.mlp.experts.7.up_proj.weight": "model-00003-of-00019.safetensors",
|
768 |
+
"model.layers.3.mlp.gate.weight": "model-00003-of-00019.safetensors",
|
769 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
|
770 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00003-of-00019.safetensors",
|
771 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
|
772 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
|
773 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
|
774 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
|
775 |
+
"model.layers.30.input_layernorm.weight": "model-00019-of-00019.safetensors",
|
776 |
+
"model.layers.30.mlp.experts.0.down_proj.weight": "model-00018-of-00019.safetensors",
|
777 |
+
"model.layers.30.mlp.experts.0.gate_proj.weight": "model-00018-of-00019.safetensors",
|
778 |
+
"model.layers.30.mlp.experts.0.up_proj.weight": "model-00018-of-00019.safetensors",
|
779 |
+
"model.layers.30.mlp.experts.1.down_proj.weight": "model-00018-of-00019.safetensors",
|
780 |
+
"model.layers.30.mlp.experts.1.gate_proj.weight": "model-00018-of-00019.safetensors",
|
781 |
+
"model.layers.30.mlp.experts.1.up_proj.weight": "model-00018-of-00019.safetensors",
|
782 |
+
"model.layers.30.mlp.experts.2.down_proj.weight": "model-00019-of-00019.safetensors",
|
783 |
+
"model.layers.30.mlp.experts.2.gate_proj.weight": "model-00019-of-00019.safetensors",
|
784 |
+
"model.layers.30.mlp.experts.2.up_proj.weight": "model-00019-of-00019.safetensors",
|
785 |
+
"model.layers.30.mlp.experts.3.down_proj.weight": "model-00019-of-00019.safetensors",
|
786 |
+
"model.layers.30.mlp.experts.3.gate_proj.weight": "model-00019-of-00019.safetensors",
|
787 |
+
"model.layers.30.mlp.experts.3.up_proj.weight": "model-00019-of-00019.safetensors",
|
788 |
+
"model.layers.30.mlp.experts.4.down_proj.weight": "model-00019-of-00019.safetensors",
|
789 |
+
"model.layers.30.mlp.experts.4.gate_proj.weight": "model-00019-of-00019.safetensors",
|
790 |
+
"model.layers.30.mlp.experts.4.up_proj.weight": "model-00019-of-00019.safetensors",
|
791 |
+
"model.layers.30.mlp.experts.5.down_proj.weight": "model-00019-of-00019.safetensors",
|
792 |
+
"model.layers.30.mlp.experts.5.gate_proj.weight": "model-00019-of-00019.safetensors",
|
793 |
+
"model.layers.30.mlp.experts.5.up_proj.weight": "model-00019-of-00019.safetensors",
|
794 |
+
"model.layers.30.mlp.experts.6.down_proj.weight": "model-00019-of-00019.safetensors",
|
795 |
+
"model.layers.30.mlp.experts.6.gate_proj.weight": "model-00019-of-00019.safetensors",
|
796 |
+
"model.layers.30.mlp.experts.6.up_proj.weight": "model-00019-of-00019.safetensors",
|
797 |
+
"model.layers.30.mlp.experts.7.down_proj.weight": "model-00019-of-00019.safetensors",
|
798 |
+
"model.layers.30.mlp.experts.7.gate_proj.weight": "model-00019-of-00019.safetensors",
|
799 |
+
"model.layers.30.mlp.experts.7.up_proj.weight": "model-00019-of-00019.safetensors",
|
800 |
+
"model.layers.30.mlp.gate.weight": "model-00018-of-00019.safetensors",
|
801 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
|
802 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00018-of-00019.safetensors",
|
803 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
|
804 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
|
805 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
|
806 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
|
807 |
+
"model.layers.31.input_layernorm.weight": "model-00019-of-00019.safetensors",
|
808 |
+
"model.layers.31.mlp.experts.0.down_proj.weight": "model-00019-of-00019.safetensors",
|
809 |
+
"model.layers.31.mlp.experts.0.gate_proj.weight": "model-00019-of-00019.safetensors",
|
810 |
+
"model.layers.31.mlp.experts.0.up_proj.weight": "model-00019-of-00019.safetensors",
|
811 |
+
"model.layers.31.mlp.experts.1.down_proj.weight": "model-00019-of-00019.safetensors",
|
812 |
+
"model.layers.31.mlp.experts.1.gate_proj.weight": "model-00019-of-00019.safetensors",
|
813 |
+
"model.layers.31.mlp.experts.1.up_proj.weight": "model-00019-of-00019.safetensors",
|
814 |
+
"model.layers.31.mlp.experts.2.down_proj.weight": "model-00019-of-00019.safetensors",
|
815 |
+
"model.layers.31.mlp.experts.2.gate_proj.weight": "model-00019-of-00019.safetensors",
|
816 |
+
"model.layers.31.mlp.experts.2.up_proj.weight": "model-00019-of-00019.safetensors",
|
817 |
+
"model.layers.31.mlp.experts.3.down_proj.weight": "model-00019-of-00019.safetensors",
|
818 |
+
"model.layers.31.mlp.experts.3.gate_proj.weight": "model-00019-of-00019.safetensors",
|
819 |
+
"model.layers.31.mlp.experts.3.up_proj.weight": "model-00019-of-00019.safetensors",
|
820 |
+
"model.layers.31.mlp.experts.4.down_proj.weight": "model-00019-of-00019.safetensors",
|
821 |
+
"model.layers.31.mlp.experts.4.gate_proj.weight": "model-00019-of-00019.safetensors",
|
822 |
+
"model.layers.31.mlp.experts.4.up_proj.weight": "model-00019-of-00019.safetensors",
|
823 |
+
"model.layers.31.mlp.experts.5.down_proj.weight": "model-00019-of-00019.safetensors",
|
824 |
+
"model.layers.31.mlp.experts.5.gate_proj.weight": "model-00019-of-00019.safetensors",
|
825 |
+
"model.layers.31.mlp.experts.5.up_proj.weight": "model-00019-of-00019.safetensors",
|
826 |
+
"model.layers.31.mlp.experts.6.down_proj.weight": "model-00019-of-00019.safetensors",
|
827 |
+
"model.layers.31.mlp.experts.6.gate_proj.weight": "model-00019-of-00019.safetensors",
|
828 |
+
"model.layers.31.mlp.experts.6.up_proj.weight": "model-00019-of-00019.safetensors",
|
829 |
+
"model.layers.31.mlp.experts.7.down_proj.weight": "model-00019-of-00019.safetensors",
|
830 |
+
"model.layers.31.mlp.experts.7.gate_proj.weight": "model-00019-of-00019.safetensors",
|
831 |
+
"model.layers.31.mlp.experts.7.up_proj.weight": "model-00019-of-00019.safetensors",
|
832 |
+
"model.layers.31.mlp.gate.weight": "model-00019-of-00019.safetensors",
|
833 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
|
834 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00019-of-00019.safetensors",
|
835 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00019-of-00019.safetensors",
|
836 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00019-of-00019.safetensors",
|
837 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00019-of-00019.safetensors",
|
838 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00019-of-00019.safetensors",
|
839 |
+
"model.layers.4.input_layernorm.weight": "model-00004-of-00019.safetensors",
|
840 |
+
"model.layers.4.mlp.experts.0.down_proj.weight": "model-00003-of-00019.safetensors",
|
841 |
+
"model.layers.4.mlp.experts.0.gate_proj.weight": "model-00003-of-00019.safetensors",
|
842 |
+
"model.layers.4.mlp.experts.0.up_proj.weight": "model-00003-of-00019.safetensors",
|
843 |
+
"model.layers.4.mlp.experts.1.down_proj.weight": "model-00003-of-00019.safetensors",
|
844 |
+
"model.layers.4.mlp.experts.1.gate_proj.weight": "model-00003-of-00019.safetensors",
|
845 |
+
"model.layers.4.mlp.experts.1.up_proj.weight": "model-00003-of-00019.safetensors",
|
846 |
+
"model.layers.4.mlp.experts.2.down_proj.weight": "model-00003-of-00019.safetensors",
|
847 |
+
"model.layers.4.mlp.experts.2.gate_proj.weight": "model-00003-of-00019.safetensors",
|
848 |
+
"model.layers.4.mlp.experts.2.up_proj.weight": "model-00003-of-00019.safetensors",
|
849 |
+
"model.layers.4.mlp.experts.3.down_proj.weight": "model-00004-of-00019.safetensors",
|
850 |
+
"model.layers.4.mlp.experts.3.gate_proj.weight": "model-00003-of-00019.safetensors",
|
851 |
+
"model.layers.4.mlp.experts.3.up_proj.weight": "model-00003-of-00019.safetensors",
|
852 |
+
"model.layers.4.mlp.experts.4.down_proj.weight": "model-00004-of-00019.safetensors",
|
853 |
+
"model.layers.4.mlp.experts.4.gate_proj.weight": "model-00004-of-00019.safetensors",
|
854 |
+
"model.layers.4.mlp.experts.4.up_proj.weight": "model-00004-of-00019.safetensors",
|
855 |
+
"model.layers.4.mlp.experts.5.down_proj.weight": "model-00004-of-00019.safetensors",
|
856 |
+
"model.layers.4.mlp.experts.5.gate_proj.weight": "model-00004-of-00019.safetensors",
|
857 |
+
"model.layers.4.mlp.experts.5.up_proj.weight": "model-00004-of-00019.safetensors",
|
858 |
+
"model.layers.4.mlp.experts.6.down_proj.weight": "model-00004-of-00019.safetensors",
|
859 |
+
"model.layers.4.mlp.experts.6.gate_proj.weight": "model-00004-of-00019.safetensors",
|
860 |
+
"model.layers.4.mlp.experts.6.up_proj.weight": "model-00004-of-00019.safetensors",
|
861 |
+
"model.layers.4.mlp.experts.7.down_proj.weight": "model-00004-of-00019.safetensors",
|
862 |
+
"model.layers.4.mlp.experts.7.gate_proj.weight": "model-00004-of-00019.safetensors",
|
863 |
+
"model.layers.4.mlp.experts.7.up_proj.weight": "model-00004-of-00019.safetensors",
|
864 |
+
"model.layers.4.mlp.gate.weight": "model-00003-of-00019.safetensors",
|
865 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00004-of-00019.safetensors",
|
866 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00003-of-00019.safetensors",
|
867 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
|
868 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
|
869 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
|
870 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
|
871 |
+
"model.layers.5.input_layernorm.weight": "model-00004-of-00019.safetensors",
|
872 |
+
"model.layers.5.mlp.experts.0.down_proj.weight": "model-00004-of-00019.safetensors",
|
873 |
+
"model.layers.5.mlp.experts.0.gate_proj.weight": "model-00004-of-00019.safetensors",
|
874 |
+
"model.layers.5.mlp.experts.0.up_proj.weight": "model-00004-of-00019.safetensors",
|
875 |
+
"model.layers.5.mlp.experts.1.down_proj.weight": "model-00004-of-00019.safetensors",
|
876 |
+
"model.layers.5.mlp.experts.1.gate_proj.weight": "model-00004-of-00019.safetensors",
|
877 |
+
"model.layers.5.mlp.experts.1.up_proj.weight": "model-00004-of-00019.safetensors",
|
878 |
+
"model.layers.5.mlp.experts.2.down_proj.weight": "model-00004-of-00019.safetensors",
|
879 |
+
"model.layers.5.mlp.experts.2.gate_proj.weight": "model-00004-of-00019.safetensors",
|
880 |
+
"model.layers.5.mlp.experts.2.up_proj.weight": "model-00004-of-00019.safetensors",
|
881 |
+
"model.layers.5.mlp.experts.3.down_proj.weight": "model-00004-of-00019.safetensors",
|
882 |
+
"model.layers.5.mlp.experts.3.gate_proj.weight": "model-00004-of-00019.safetensors",
|
883 |
+
"model.layers.5.mlp.experts.3.up_proj.weight": "model-00004-of-00019.safetensors",
|
884 |
+
"model.layers.5.mlp.experts.4.down_proj.weight": "model-00004-of-00019.safetensors",
|
885 |
+
"model.layers.5.mlp.experts.4.gate_proj.weight": "model-00004-of-00019.safetensors",
|
886 |
+
"model.layers.5.mlp.experts.4.up_proj.weight": "model-00004-of-00019.safetensors",
|
887 |
+
"model.layers.5.mlp.experts.5.down_proj.weight": "model-00004-of-00019.safetensors",
|
888 |
+
"model.layers.5.mlp.experts.5.gate_proj.weight": "model-00004-of-00019.safetensors",
|
889 |
+
"model.layers.5.mlp.experts.5.up_proj.weight": "model-00004-of-00019.safetensors",
|
890 |
+
"model.layers.5.mlp.experts.6.down_proj.weight": "model-00004-of-00019.safetensors",
|
891 |
+
"model.layers.5.mlp.experts.6.gate_proj.weight": "model-00004-of-00019.safetensors",
|
892 |
+
"model.layers.5.mlp.experts.6.up_proj.weight": "model-00004-of-00019.safetensors",
|
893 |
+
"model.layers.5.mlp.experts.7.down_proj.weight": "model-00004-of-00019.safetensors",
|
894 |
+
"model.layers.5.mlp.experts.7.gate_proj.weight": "model-00004-of-00019.safetensors",
|
895 |
+
"model.layers.5.mlp.experts.7.up_proj.weight": "model-00004-of-00019.safetensors",
|
896 |
+
"model.layers.5.mlp.gate.weight": "model-00004-of-00019.safetensors",
|
897 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00004-of-00019.safetensors",
|
898 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00004-of-00019.safetensors",
|
899 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00004-of-00019.safetensors",
|
900 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00004-of-00019.safetensors",
|
901 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00004-of-00019.safetensors",
|
902 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00004-of-00019.safetensors",
|
903 |
+
"model.layers.6.input_layernorm.weight": "model-00005-of-00019.safetensors",
|
904 |
+
"model.layers.6.mlp.experts.0.down_proj.weight": "model-00004-of-00019.safetensors",
|
905 |
+
"model.layers.6.mlp.experts.0.gate_proj.weight": "model-00004-of-00019.safetensors",
|
906 |
+
"model.layers.6.mlp.experts.0.up_proj.weight": "model-00004-of-00019.safetensors",
|
907 |
+
"model.layers.6.mlp.experts.1.down_proj.weight": "model-00005-of-00019.safetensors",
|
908 |
+
"model.layers.6.mlp.experts.1.gate_proj.weight": "model-00004-of-00019.safetensors",
|
909 |
+
"model.layers.6.mlp.experts.1.up_proj.weight": "model-00005-of-00019.safetensors",
|
910 |
+
"model.layers.6.mlp.experts.2.down_proj.weight": "model-00005-of-00019.safetensors",
|
911 |
+
"model.layers.6.mlp.experts.2.gate_proj.weight": "model-00005-of-00019.safetensors",
|
912 |
+
"model.layers.6.mlp.experts.2.up_proj.weight": "model-00005-of-00019.safetensors",
|
913 |
+
"model.layers.6.mlp.experts.3.down_proj.weight": "model-00005-of-00019.safetensors",
|
914 |
+
"model.layers.6.mlp.experts.3.gate_proj.weight": "model-00005-of-00019.safetensors",
|
915 |
+
"model.layers.6.mlp.experts.3.up_proj.weight": "model-00005-of-00019.safetensors",
|
916 |
+
"model.layers.6.mlp.experts.4.down_proj.weight": "model-00005-of-00019.safetensors",
|
917 |
+
"model.layers.6.mlp.experts.4.gate_proj.weight": "model-00005-of-00019.safetensors",
|
918 |
+
"model.layers.6.mlp.experts.4.up_proj.weight": "model-00005-of-00019.safetensors",
|
919 |
+
"model.layers.6.mlp.experts.5.down_proj.weight": "model-00005-of-00019.safetensors",
|
920 |
+
"model.layers.6.mlp.experts.5.gate_proj.weight": "model-00005-of-00019.safetensors",
|
921 |
+
"model.layers.6.mlp.experts.5.up_proj.weight": "model-00005-of-00019.safetensors",
|
922 |
+
"model.layers.6.mlp.experts.6.down_proj.weight": "model-00005-of-00019.safetensors",
|
923 |
+
"model.layers.6.mlp.experts.6.gate_proj.weight": "model-00005-of-00019.safetensors",
|
924 |
+
"model.layers.6.mlp.experts.6.up_proj.weight": "model-00005-of-00019.safetensors",
|
925 |
+
"model.layers.6.mlp.experts.7.down_proj.weight": "model-00005-of-00019.safetensors",
|
926 |
+
"model.layers.6.mlp.experts.7.gate_proj.weight": "model-00005-of-00019.safetensors",
|
927 |
+
"model.layers.6.mlp.experts.7.up_proj.weight": "model-00005-of-00019.safetensors",
|
928 |
+
"model.layers.6.mlp.gate.weight": "model-00004-of-00019.safetensors",
|
929 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00005-of-00019.safetensors",
|
930 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00004-of-00019.safetensors",
|
931 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00004-of-00019.safetensors",
|
932 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00004-of-00019.safetensors",
|
933 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00004-of-00019.safetensors",
|
934 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00004-of-00019.safetensors",
|
935 |
+
"model.layers.7.input_layernorm.weight": "model-00006-of-00019.safetensors",
|
936 |
+
"model.layers.7.mlp.experts.0.down_proj.weight": "model-00005-of-00019.safetensors",
|
937 |
+
"model.layers.7.mlp.experts.0.gate_proj.weight": "model-00005-of-00019.safetensors",
|
938 |
+
"model.layers.7.mlp.experts.0.up_proj.weight": "model-00005-of-00019.safetensors",
|
939 |
+
"model.layers.7.mlp.experts.1.down_proj.weight": "model-00005-of-00019.safetensors",
|
940 |
+
"model.layers.7.mlp.experts.1.gate_proj.weight": "model-00005-of-00019.safetensors",
|
941 |
+
"model.layers.7.mlp.experts.1.up_proj.weight": "model-00005-of-00019.safetensors",
|
942 |
+
"model.layers.7.mlp.experts.2.down_proj.weight": "model-00005-of-00019.safetensors",
|
943 |
+
"model.layers.7.mlp.experts.2.gate_proj.weight": "model-00005-of-00019.safetensors",
|
944 |
+
"model.layers.7.mlp.experts.2.up_proj.weight": "model-00005-of-00019.safetensors",
|
945 |
+
"model.layers.7.mlp.experts.3.down_proj.weight": "model-00005-of-00019.safetensors",
|
946 |
+
"model.layers.7.mlp.experts.3.gate_proj.weight": "model-00005-of-00019.safetensors",
|
947 |
+
"model.layers.7.mlp.experts.3.up_proj.weight": "model-00005-of-00019.safetensors",
|
948 |
+
"model.layers.7.mlp.experts.4.down_proj.weight": "model-00005-of-00019.safetensors",
|
949 |
+
"model.layers.7.mlp.experts.4.gate_proj.weight": "model-00005-of-00019.safetensors",
|
950 |
+
"model.layers.7.mlp.experts.4.up_proj.weight": "model-00005-of-00019.safetensors",
|
951 |
+
"model.layers.7.mlp.experts.5.down_proj.weight": "model-00005-of-00019.safetensors",
|
952 |
+
"model.layers.7.mlp.experts.5.gate_proj.weight": "model-00005-of-00019.safetensors",
|
953 |
+
"model.layers.7.mlp.experts.5.up_proj.weight": "model-00005-of-00019.safetensors",
|
954 |
+
"model.layers.7.mlp.experts.6.down_proj.weight": "model-00005-of-00019.safetensors",
|
955 |
+
"model.layers.7.mlp.experts.6.gate_proj.weight": "model-00005-of-00019.safetensors",
|
956 |
+
"model.layers.7.mlp.experts.6.up_proj.weight": "model-00005-of-00019.safetensors",
|
957 |
+
"model.layers.7.mlp.experts.7.down_proj.weight": "model-00006-of-00019.safetensors",
|
958 |
+
"model.layers.7.mlp.experts.7.gate_proj.weight": "model-00005-of-00019.safetensors",
|
959 |
+
"model.layers.7.mlp.experts.7.up_proj.weight": "model-00006-of-00019.safetensors",
|
960 |
+
"model.layers.7.mlp.gate.weight": "model-00005-of-00019.safetensors",
|
961 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
|
962 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00005-of-00019.safetensors",
|
963 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00005-of-00019.safetensors",
|
964 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00005-of-00019.safetensors",
|
965 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00005-of-00019.safetensors",
|
966 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00005-of-00019.safetensors",
|
967 |
+
"model.layers.8.input_layernorm.weight": "model-00006-of-00019.safetensors",
|
968 |
+
"model.layers.8.mlp.experts.0.down_proj.weight": "model-00006-of-00019.safetensors",
|
969 |
+
"model.layers.8.mlp.experts.0.gate_proj.weight": "model-00006-of-00019.safetensors",
|
970 |
+
"model.layers.8.mlp.experts.0.up_proj.weight": "model-00006-of-00019.safetensors",
|
971 |
+
"model.layers.8.mlp.experts.1.down_proj.weight": "model-00006-of-00019.safetensors",
|
972 |
+
"model.layers.8.mlp.experts.1.gate_proj.weight": "model-00006-of-00019.safetensors",
|
973 |
+
"model.layers.8.mlp.experts.1.up_proj.weight": "model-00006-of-00019.safetensors",
|
974 |
+
"model.layers.8.mlp.experts.2.down_proj.weight": "model-00006-of-00019.safetensors",
|
975 |
+
"model.layers.8.mlp.experts.2.gate_proj.weight": "model-00006-of-00019.safetensors",
|
976 |
+
"model.layers.8.mlp.experts.2.up_proj.weight": "model-00006-of-00019.safetensors",
|
977 |
+
"model.layers.8.mlp.experts.3.down_proj.weight": "model-00006-of-00019.safetensors",
|
978 |
+
"model.layers.8.mlp.experts.3.gate_proj.weight": "model-00006-of-00019.safetensors",
|
979 |
+
"model.layers.8.mlp.experts.3.up_proj.weight": "model-00006-of-00019.safetensors",
|
980 |
+
"model.layers.8.mlp.experts.4.down_proj.weight": "model-00006-of-00019.safetensors",
|
981 |
+
"model.layers.8.mlp.experts.4.gate_proj.weight": "model-00006-of-00019.safetensors",
|
982 |
+
"model.layers.8.mlp.experts.4.up_proj.weight": "model-00006-of-00019.safetensors",
|
983 |
+
"model.layers.8.mlp.experts.5.down_proj.weight": "model-00006-of-00019.safetensors",
|
984 |
+
"model.layers.8.mlp.experts.5.gate_proj.weight": "model-00006-of-00019.safetensors",
|
985 |
+
"model.layers.8.mlp.experts.5.up_proj.weight": "model-00006-of-00019.safetensors",
|
986 |
+
"model.layers.8.mlp.experts.6.down_proj.weight": "model-00006-of-00019.safetensors",
|
987 |
+
"model.layers.8.mlp.experts.6.gate_proj.weight": "model-00006-of-00019.safetensors",
|
988 |
+
"model.layers.8.mlp.experts.6.up_proj.weight": "model-00006-of-00019.safetensors",
|
989 |
+
"model.layers.8.mlp.experts.7.down_proj.weight": "model-00006-of-00019.safetensors",
|
990 |
+
"model.layers.8.mlp.experts.7.gate_proj.weight": "model-00006-of-00019.safetensors",
|
991 |
+
"model.layers.8.mlp.experts.7.up_proj.weight": "model-00006-of-00019.safetensors",
|
992 |
+
"model.layers.8.mlp.gate.weight": "model-00006-of-00019.safetensors",
|
993 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
|
994 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00006-of-00019.safetensors",
|
995 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
|
996 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
|
997 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
|
998 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
|
999 |
+
"model.layers.9.input_layernorm.weight": "model-00007-of-00019.safetensors",
|
1000 |
+
"model.layers.9.mlp.experts.0.down_proj.weight": "model-00006-of-00019.safetensors",
|
1001 |
+
"model.layers.9.mlp.experts.0.gate_proj.weight": "model-00006-of-00019.safetensors",
|
1002 |
+
"model.layers.9.mlp.experts.0.up_proj.weight": "model-00006-of-00019.safetensors",
|
1003 |
+
"model.layers.9.mlp.experts.1.down_proj.weight": "model-00006-of-00019.safetensors",
|
1004 |
+
"model.layers.9.mlp.experts.1.gate_proj.weight": "model-00006-of-00019.safetensors",
|
1005 |
+
"model.layers.9.mlp.experts.1.up_proj.weight": "model-00006-of-00019.safetensors",
|
1006 |
+
"model.layers.9.mlp.experts.2.down_proj.weight": "model-00006-of-00019.safetensors",
|
1007 |
+
"model.layers.9.mlp.experts.2.gate_proj.weight": "model-00006-of-00019.safetensors",
|
1008 |
+
"model.layers.9.mlp.experts.2.up_proj.weight": "model-00006-of-00019.safetensors",
|
1009 |
+
"model.layers.9.mlp.experts.3.down_proj.weight": "model-00006-of-00019.safetensors",
|
1010 |
+
"model.layers.9.mlp.experts.3.gate_proj.weight": "model-00006-of-00019.safetensors",
|
1011 |
+
"model.layers.9.mlp.experts.3.up_proj.weight": "model-00006-of-00019.safetensors",
|
1012 |
+
"model.layers.9.mlp.experts.4.down_proj.weight": "model-00006-of-00019.safetensors",
|
1013 |
+
"model.layers.9.mlp.experts.4.gate_proj.weight": "model-00006-of-00019.safetensors",
|
1014 |
+
"model.layers.9.mlp.experts.4.up_proj.weight": "model-00006-of-00019.safetensors",
|
1015 |
+
"model.layers.9.mlp.experts.5.down_proj.weight": "model-00007-of-00019.safetensors",
|
1016 |
+
"model.layers.9.mlp.experts.5.gate_proj.weight": "model-00007-of-00019.safetensors",
|
1017 |
+
"model.layers.9.mlp.experts.5.up_proj.weight": "model-00007-of-00019.safetensors",
|
1018 |
+
"model.layers.9.mlp.experts.6.down_proj.weight": "model-00007-of-00019.safetensors",
|
1019 |
+
"model.layers.9.mlp.experts.6.gate_proj.weight": "model-00007-of-00019.safetensors",
|
1020 |
+
"model.layers.9.mlp.experts.6.up_proj.weight": "model-00007-of-00019.safetensors",
|
1021 |
+
"model.layers.9.mlp.experts.7.down_proj.weight": "model-00007-of-00019.safetensors",
|
1022 |
+
"model.layers.9.mlp.experts.7.gate_proj.weight": "model-00007-of-00019.safetensors",
|
1023 |
+
"model.layers.9.mlp.experts.7.up_proj.weight": "model-00007-of-00019.safetensors",
|
1024 |
+
"model.layers.9.mlp.gate.weight": "model-00006-of-00019.safetensors",
|
1025 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00007-of-00019.safetensors",
|
1026 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00006-of-00019.safetensors",
|
1027 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
|
1028 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
|
1029 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
|
1030 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
|
1031 |
+
"model.norm.bias": "model-00019-of-00019.safetensors",
|
1032 |
+
"model.norm.weight": "model-00019-of-00019.safetensors"
|
1033 |
+
}
|
1034 |
+
}
|
modeling_tcmoe.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The HuggingFace Inc. team. All rights reserved.
|
2 |
+
# Copyright (c) Shen Yan. All rights reserved.
|
3 |
+
# This code is built upon Huggingface's transformers repository.
|
4 |
+
|
5 |
+
import math
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from transformers.utils import logging
|
11 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
12 |
+
from torch.nn import CrossEntropyLoss
|
13 |
+
from configuration_tcmoe import TCMoEConfig
|
14 |
+
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
20 |
+
def _make_causal_mask(
|
21 |
+
input_ids_shape: torch.Size,
|
22 |
+
dtype: torch.dtype,
|
23 |
+
device: torch.device,
|
24 |
+
past_key_values_length: int = 0,
|
25 |
+
):
|
26 |
+
"""Make causal mask used for bi-directional self-attention."""
|
27 |
+
batch_size, tgt_len = input_ids_shape
|
28 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
|
29 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
30 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
31 |
+
mask = mask.to(dtype)
|
32 |
+
if past_key_values_length > 0:
|
33 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
34 |
+
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
|
35 |
+
|
36 |
+
|
37 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
38 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
39 |
+
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
|
40 |
+
batch_size, src_len = mask.size()
|
41 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
42 |
+
|
43 |
+
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
|
44 |
+
inverted_mask = 1.0 - expanded_mask
|
45 |
+
|
46 |
+
return inverted_mask.masked_fill(
|
47 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
class RotaryEmbedding(nn.Module):
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
dim: int,
|
55 |
+
max_position_embeddings: int,
|
56 |
+
base: int = 10_000,
|
57 |
+
device: Optional[torch.device] = None,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
self.dim = dim
|
62 |
+
self.max_position_embeddings = max_position_embeddings
|
63 |
+
self.base = base
|
64 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
65 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
66 |
+
|
67 |
+
# Build here to make `torch.jit.trace` work.
|
68 |
+
self._set_cos_sin_cache(
|
69 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
|
70 |
+
)
|
71 |
+
|
72 |
+
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
73 |
+
self.max_seq_len_cached = seq_len
|
74 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
75 |
+
|
76 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
77 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
78 |
+
freqs = torch.outer(t, self.inv_freq)
|
79 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
80 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
81 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
82 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
83 |
+
|
84 |
+
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
|
85 |
+
# x: [batch_size, num_heads, seq_len, head_size]
|
86 |
+
if seq_len > self.max_seq_len_cached:
|
87 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
|
88 |
+
return (
|
89 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
90 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def rotate_half(x: torch.Tensor):
|
95 |
+
"""Rotates half the hidden dims of the input."""
|
96 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
97 |
+
return torch.cat((-x2, x1), dim=-1)
|
98 |
+
|
99 |
+
|
100 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
101 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
102 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
103 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
104 |
+
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
105 |
+
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
106 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
107 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
108 |
+
return q_embed, k_embed
|
109 |
+
|
110 |
+
|
111 |
+
class RMSNorm(nn.Module):
|
112 |
+
def __init__(self, hidden_size, eps=1e-6):
|
113 |
+
"""
|
114 |
+
RMSNorm is equivalent to T5LayerNorm
|
115 |
+
"""
|
116 |
+
super().__init__()
|
117 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
118 |
+
self.variance_epsilon = eps
|
119 |
+
|
120 |
+
def forward(self, hidden_states):
|
121 |
+
input_dtype = hidden_states.dtype
|
122 |
+
hidden_states = hidden_states.to(torch.float32)
|
123 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
124 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
125 |
+
return self.weight * hidden_states.to(input_dtype)
|
126 |
+
|
127 |
+
def extra_repr(self):
|
128 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
129 |
+
|
130 |
+
|
131 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
132 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
133 |
+
"""
|
134 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
135 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
136 |
+
"""
|
137 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
138 |
+
if n_rep == 1:
|
139 |
+
return hidden_states
|
140 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
141 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
142 |
+
|
143 |
+
|
144 |
+
class Attention(nn.Module):
|
145 |
+
def __init__(self, config: TCMoEConfig):
|
146 |
+
super().__init__()
|
147 |
+
self.config = config
|
148 |
+
self.hidden_size = config.hidden_size
|
149 |
+
self.num_heads = config.num_attention_heads
|
150 |
+
self.head_dim = self.hidden_size // self.num_heads
|
151 |
+
self.num_key_value_heads = config.num_key_value_heads
|
152 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
153 |
+
self.max_position_embeddings = config.max_position_embeddings
|
154 |
+
|
155 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
156 |
+
raise ValueError(
|
157 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
158 |
+
f" and `num_heads`: {self.num_heads})."
|
159 |
+
)
|
160 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
161 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
162 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
163 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
164 |
+
self.k_norm = RMSNorm(
|
165 |
+
(self.hidden_size // self.num_heads), eps=config.norm_eps
|
166 |
+
)
|
167 |
+
|
168 |
+
self._init_rope()
|
169 |
+
|
170 |
+
def _init_rope(self):
|
171 |
+
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
172 |
+
self.rotary_emb = RotaryEmbedding(
|
173 |
+
self.rotary_ndims,
|
174 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
175 |
+
base=self.config.rope_theta,
|
176 |
+
)
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
hidden_states: torch.FloatTensor,
|
181 |
+
attention_mask: torch.FloatTensor,
|
182 |
+
position_ids: torch.LongTensor,
|
183 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
184 |
+
output_attentions: Optional[bool] = False,
|
185 |
+
use_cache: Optional[bool] = False,
|
186 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
187 |
+
bsz, q_len, _ = hidden_states.size()
|
188 |
+
|
189 |
+
query_states = self.q_proj(hidden_states)
|
190 |
+
key_states = self.k_proj(hidden_states)
|
191 |
+
value_states = self.v_proj(hidden_states)
|
192 |
+
|
193 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
194 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
195 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
196 |
+
|
197 |
+
query_rot = query_states[..., : self.rotary_ndims]
|
198 |
+
query_pass = query_states[..., self.rotary_ndims :]
|
199 |
+
key_rot = key_states[..., : self.rotary_ndims]
|
200 |
+
key_pass = key_states[..., self.rotary_ndims :]
|
201 |
+
|
202 |
+
kv_seq_len = key_states.shape[-2]
|
203 |
+
if past_key_value is not None:
|
204 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
205 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
206 |
+
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
207 |
+
|
208 |
+
key_states = self.k_norm(key_states)
|
209 |
+
|
210 |
+
# [batch_size, num_heads, seq_len, head_dim]
|
211 |
+
query_states = torch.cat((query_states, query_pass), dim=-1)
|
212 |
+
key_states = torch.cat((key_states, key_pass), dim=-1)
|
213 |
+
|
214 |
+
if past_key_value is not None:
|
215 |
+
# Reuse k, v, self_attention
|
216 |
+
key_states = torch.cat((past_key_value[0], key_states), dim=2)
|
217 |
+
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
218 |
+
|
219 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
220 |
+
|
221 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
222 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
223 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
224 |
+
|
225 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
226 |
+
|
227 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
228 |
+
raise ValueError(
|
229 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
230 |
+
f" {attn_weights.size()}"
|
231 |
+
)
|
232 |
+
|
233 |
+
if attention_mask is not None:
|
234 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
235 |
+
raise ValueError(
|
236 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
237 |
+
)
|
238 |
+
attn_weights = attn_weights + attention_mask
|
239 |
+
|
240 |
+
# Upcast attention to fp32
|
241 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
242 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
243 |
+
|
244 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
245 |
+
raise ValueError(
|
246 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
247 |
+
f" {attn_output.size()}"
|
248 |
+
)
|
249 |
+
|
250 |
+
# Merge heads
|
251 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
252 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
253 |
+
|
254 |
+
# Final linear projection
|
255 |
+
attn_output = self.o_proj(attn_output)
|
256 |
+
|
257 |
+
if not output_attentions:
|
258 |
+
attn_weights = None
|
259 |
+
|
260 |
+
return attn_output, attn_weights, past_key_value
|
261 |
+
|
262 |
+
|
263 |
+
class MLP(nn.Module):
|
264 |
+
def __init__(self, config: TCMoEConfig):
|
265 |
+
super().__init__()
|
266 |
+
self.config = config
|
267 |
+
self.hidden_size = config.hidden_size
|
268 |
+
self.intermediate_size = config.intermediate_size
|
269 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
270 |
+
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
271 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
272 |
+
self.act_fn = nn.SiLU()
|
273 |
+
|
274 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
275 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
276 |
+
|
277 |
+
|
278 |
+
class TCMoEBlock(nn.Module):
|
279 |
+
def __init__(self, config):
|
280 |
+
super().__init__()
|
281 |
+
self.num_experts = config.num_experts
|
282 |
+
self.top_k = config.moe_topk
|
283 |
+
self.num_null_experts = config.num_null_experts
|
284 |
+
self.gate = nn.Linear(config.hidden_size, self.num_experts * 2 + self.num_null_experts, bias=False)
|
285 |
+
self.experts = nn.ModuleList([MLP(config) for _ in range(self.num_experts)])
|
286 |
+
|
287 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
288 |
+
self.gate.float()
|
289 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
290 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
291 |
+
|
292 |
+
logits = self.gate(hidden_states.float())
|
293 |
+
|
294 |
+
# Add bias to the null experts and negative experts
|
295 |
+
logits[:, self.num_experts * 2:] = logits[:, self.num_experts * 2:] - 10.0
|
296 |
+
logits[:, self.num_experts:self.num_experts * 2] = logits[:, self.num_experts:self.num_experts * 2] - 1.0
|
297 |
+
|
298 |
+
gates = torch.nn.functional.softmax(logits, dim=1)
|
299 |
+
|
300 |
+
# Select Top-k experts
|
301 |
+
weights, selected_experts = torch.topk(gates, k=self.top_k, dim=-1, sorted=False)
|
302 |
+
|
303 |
+
# Calculate the weight sum for the activated non-null experts
|
304 |
+
weights_from_non_null_experts = weights * (selected_experts < 2 * self.num_experts).float()
|
305 |
+
weightsum_from_non_null_experts = weights_from_non_null_experts.sum(1, keepdim=True)
|
306 |
+
|
307 |
+
# Calculate the weight sum for all null experts (since all null experts are activated)
|
308 |
+
weightsum_from_null_experts = gates[:, 2 * self.num_experts:].sum(1, keepdim=True)
|
309 |
+
|
310 |
+
# Normalize the weights of all activated experts
|
311 |
+
weightsum = weightsum_from_non_null_experts + weightsum_from_null_experts
|
312 |
+
gates = gates / weightsum
|
313 |
+
weights = torch.gather(gates, 1, selected_experts)
|
314 |
+
weights = weights.to(hidden_states.dtype)
|
315 |
+
|
316 |
+
final_hidden_states = torch.zeros(
|
317 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
318 |
+
)
|
319 |
+
|
320 |
+
# One hot encode the selected experts to create an expert mask
|
321 |
+
# this will be used to easily index which expert is going to be selected
|
322 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts * 2 + self.num_null_experts).permute(2, 1, 0)
|
323 |
+
|
324 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
325 |
+
for expert_idx in range(self.num_experts * 2):
|
326 |
+
expert_layer = self.experts[expert_idx if expert_idx < self.num_experts else expert_idx - self.num_experts]
|
327 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
328 |
+
|
329 |
+
# Index the correct hidden states and compute the expert hidden state for
|
330 |
+
# the current expert. We need to make sure to multiply the output hidden
|
331 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
332 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
333 |
+
if expert_idx < self.num_experts:
|
334 |
+
current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None]
|
335 |
+
else:
|
336 |
+
current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None] * -1.0
|
337 |
+
current_hidden_states = expert_layer(current_state) * weights[top_x, idx, None]
|
338 |
+
|
339 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
340 |
+
# the `top_x` tensor here.
|
341 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
342 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
343 |
+
return final_hidden_states
|
344 |
+
|
345 |
+
|
346 |
+
class TCMoEDecoderLayer(nn.Module):
|
347 |
+
def __init__(self, config: TCMoEConfig):
|
348 |
+
super().__init__()
|
349 |
+
self.self_attn = Attention(config)
|
350 |
+
self.mlp = TCMoEBlock(config)
|
351 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
352 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
353 |
+
|
354 |
+
def forward(
|
355 |
+
self,
|
356 |
+
hidden_states: Optional[torch.FloatTensor],
|
357 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
358 |
+
position_ids: Optional[torch.LongTensor] = None,
|
359 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
360 |
+
output_attentions: Optional[bool] = False,
|
361 |
+
use_cache: Optional[bool] = False,
|
362 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
363 |
+
residual = hidden_states
|
364 |
+
|
365 |
+
hidden_states = self.input_layernorm(hidden_states)
|
366 |
+
|
367 |
+
# Self Attention
|
368 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
369 |
+
hidden_states=hidden_states,
|
370 |
+
attention_mask=attention_mask,
|
371 |
+
position_ids=position_ids,
|
372 |
+
past_key_value=past_key_value,
|
373 |
+
output_attentions=output_attentions,
|
374 |
+
use_cache=use_cache,
|
375 |
+
)
|
376 |
+
hidden_states = residual + hidden_states
|
377 |
+
|
378 |
+
# Fully Connected
|
379 |
+
residual = hidden_states
|
380 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
381 |
+
hidden_states = self.mlp(hidden_states)
|
382 |
+
hidden_states = residual + hidden_states
|
383 |
+
|
384 |
+
outputs = (hidden_states,)
|
385 |
+
|
386 |
+
if output_attentions:
|
387 |
+
outputs += (self_attn_weights,)
|
388 |
+
|
389 |
+
if use_cache:
|
390 |
+
outputs += (present_key_value,)
|
391 |
+
|
392 |
+
return outputs
|
393 |
+
|
394 |
+
|
395 |
+
class TCMoEPreTrainedModel(PreTrainedModel):
|
396 |
+
"""An abstract class to handle weights initialization and a simple interface
|
397 |
+
for downloading and loading pretrained models.
|
398 |
+
"""
|
399 |
+
|
400 |
+
config_class = TCMoEConfig
|
401 |
+
base_model_prefix = "transformer"
|
402 |
+
supports_gradient_checkpointing = True
|
403 |
+
_no_split_modules = ["TCMoEDecoderLayer"]
|
404 |
+
_skip_keys_device_placement = "past_key_values"
|
405 |
+
|
406 |
+
def _init_weights(self, module):
|
407 |
+
std = self.config.initializer_range
|
408 |
+
if isinstance(module, nn.Linear):
|
409 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
410 |
+
if module.bias is not None:
|
411 |
+
module.bias.data.zero_()
|
412 |
+
elif isinstance(module, nn.Embedding):
|
413 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
414 |
+
if module.padding_idx is not None:
|
415 |
+
module.weight.data[module.padding_idx].zero_()
|
416 |
+
elif isinstance(module, RMSNorm):
|
417 |
+
module.weight.data.fill_(1.0)
|
418 |
+
elif isinstance(module, nn.LayerNorm):
|
419 |
+
module.bias.data.zero_()
|
420 |
+
module.weight.data.fill_(1.0)
|
421 |
+
|
422 |
+
|
423 |
+
class TCMoEModel(TCMoEPreTrainedModel):
|
424 |
+
def __init__(self, config: TCMoEConfig):
|
425 |
+
super().__init__(config)
|
426 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
427 |
+
self.layers = nn.ModuleList([TCMoEDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
428 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
429 |
+
|
430 |
+
self.gradient_checkpointing = False
|
431 |
+
# Initialize weights and apply final processing
|
432 |
+
self.post_init()
|
433 |
+
|
434 |
+
def get_input_embeddings(self):
|
435 |
+
return self.embed_tokens
|
436 |
+
|
437 |
+
def set_input_embeddings(self, value):
|
438 |
+
self.embed_tokens = value
|
439 |
+
|
440 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
441 |
+
def _prepare_decoder_attention_mask(
|
442 |
+
self,
|
443 |
+
attention_mask: torch.Tensor,
|
444 |
+
input_shape: torch.Size,
|
445 |
+
inputs_embeds: torch.Tensor,
|
446 |
+
past_key_values_length: int,
|
447 |
+
):
|
448 |
+
# Create causal mask
|
449 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
450 |
+
combined_attention_mask = None
|
451 |
+
if input_shape[-1] > 1:
|
452 |
+
combined_attention_mask = _make_causal_mask(
|
453 |
+
input_shape,
|
454 |
+
inputs_embeds.dtype,
|
455 |
+
device=inputs_embeds.device,
|
456 |
+
past_key_values_length=past_key_values_length,
|
457 |
+
)
|
458 |
+
|
459 |
+
if attention_mask is not None:
|
460 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
461 |
+
expanded_attn_mask = _expand_mask(
|
462 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
463 |
+
).to(inputs_embeds.device)
|
464 |
+
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
465 |
+
|
466 |
+
return combined_attention_mask
|
467 |
+
|
468 |
+
def forward(
|
469 |
+
self,
|
470 |
+
input_ids: Optional[torch.LongTensor] = None,
|
471 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
472 |
+
position_ids: Optional[torch.LongTensor] = None,
|
473 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
474 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
475 |
+
use_cache: Optional[bool] = None,
|
476 |
+
output_attentions: Optional[bool] = None,
|
477 |
+
output_hidden_states: Optional[bool] = None,
|
478 |
+
return_dict: Optional[bool] = None,
|
479 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
480 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
481 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
482 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
483 |
+
|
484 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
485 |
+
|
486 |
+
# Retrieve input_ids and inputs_embeds
|
487 |
+
if input_ids is not None and inputs_embeds is not None:
|
488 |
+
raise ValueError(
|
489 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
490 |
+
)
|
491 |
+
elif input_ids is not None:
|
492 |
+
batch_size, seq_length = input_ids.shape
|
493 |
+
elif inputs_embeds is not None:
|
494 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
495 |
+
else:
|
496 |
+
raise ValueError(
|
497 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
498 |
+
)
|
499 |
+
|
500 |
+
seq_length_with_past = seq_length
|
501 |
+
past_key_values_length = 0
|
502 |
+
|
503 |
+
if past_key_values is not None:
|
504 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
505 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
506 |
+
|
507 |
+
if position_ids is None:
|
508 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
509 |
+
position_ids = torch.arange(
|
510 |
+
past_key_values_length,
|
511 |
+
seq_length + past_key_values_length,
|
512 |
+
dtype=torch.long,
|
513 |
+
device=device,
|
514 |
+
)
|
515 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
516 |
+
else:
|
517 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
518 |
+
|
519 |
+
if inputs_embeds is None:
|
520 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
521 |
+
# Embed positions
|
522 |
+
if attention_mask is None:
|
523 |
+
attention_mask = torch.ones(
|
524 |
+
(batch_size, seq_length_with_past),
|
525 |
+
dtype=torch.bool,
|
526 |
+
device=inputs_embeds.device,
|
527 |
+
)
|
528 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
529 |
+
attention_mask,
|
530 |
+
(batch_size, seq_length),
|
531 |
+
inputs_embeds,
|
532 |
+
past_key_values_length,
|
533 |
+
)
|
534 |
+
|
535 |
+
hidden_states = inputs_embeds
|
536 |
+
|
537 |
+
if self.gradient_checkpointing and self.training:
|
538 |
+
if use_cache:
|
539 |
+
logger.warning(
|
540 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
541 |
+
)
|
542 |
+
use_cache = False
|
543 |
+
|
544 |
+
# Decoder layers
|
545 |
+
all_hidden_states = () if output_hidden_states else None
|
546 |
+
all_self_attns = () if output_attentions else None
|
547 |
+
next_decoder_cache = () if use_cache else None
|
548 |
+
|
549 |
+
for idx, decoder_layer in enumerate(self.layers):
|
550 |
+
if output_hidden_states:
|
551 |
+
all_hidden_states += (hidden_states,)
|
552 |
+
|
553 |
+
past_key_value = (
|
554 |
+
past_key_values[idx] if past_key_values is not None else None
|
555 |
+
)
|
556 |
+
|
557 |
+
if self.gradient_checkpointing and self.training:
|
558 |
+
|
559 |
+
def create_custom_forward(module):
|
560 |
+
def custom_forward(*inputs):
|
561 |
+
# None for past_key_value
|
562 |
+
return module(*inputs, past_key_value, output_attentions)
|
563 |
+
|
564 |
+
return custom_forward
|
565 |
+
|
566 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
567 |
+
create_custom_forward(decoder_layer),
|
568 |
+
hidden_states,
|
569 |
+
attention_mask,
|
570 |
+
position_ids,
|
571 |
+
)
|
572 |
+
else:
|
573 |
+
layer_outputs = decoder_layer(
|
574 |
+
hidden_states,
|
575 |
+
attention_mask=attention_mask,
|
576 |
+
position_ids=position_ids,
|
577 |
+
past_key_value=past_key_value,
|
578 |
+
output_attentions=output_attentions,
|
579 |
+
use_cache=use_cache,
|
580 |
+
)
|
581 |
+
|
582 |
+
hidden_states = layer_outputs[0]
|
583 |
+
|
584 |
+
if use_cache:
|
585 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
586 |
+
|
587 |
+
if output_attentions:
|
588 |
+
all_self_attns += (layer_outputs[1],)
|
589 |
+
|
590 |
+
hidden_states = self.norm(hidden_states)
|
591 |
+
|
592 |
+
# Add hidden states from the last decoder layer
|
593 |
+
if output_hidden_states:
|
594 |
+
all_hidden_states += (hidden_states,)
|
595 |
+
|
596 |
+
next_cache = next_decoder_cache if use_cache else None
|
597 |
+
if not return_dict:
|
598 |
+
return tuple(
|
599 |
+
v
|
600 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
601 |
+
if v is not None
|
602 |
+
)
|
603 |
+
return BaseModelOutputWithPast(
|
604 |
+
last_hidden_state=hidden_states,
|
605 |
+
past_key_values=next_cache,
|
606 |
+
hidden_states=all_hidden_states,
|
607 |
+
attentions=all_self_attns,
|
608 |
+
)
|
609 |
+
|
610 |
+
class TCMoEForCausalLM(PreTrainedModel):
|
611 |
+
_tied_weights_keys = ["lm_head.weight"]
|
612 |
+
|
613 |
+
def __init__(self, config):
|
614 |
+
super().__init__(config)
|
615 |
+
self.model = TCMoEModel(config)
|
616 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
617 |
+
|
618 |
+
# Initialize weights and apply final processing
|
619 |
+
self.post_init()
|
620 |
+
|
621 |
+
def get_input_embeddings(self):
|
622 |
+
return self.model.embed_tokens
|
623 |
+
|
624 |
+
def set_input_embeddings(self, value):
|
625 |
+
self.model.embed_tokens = value
|
626 |
+
|
627 |
+
def get_output_embeddings(self):
|
628 |
+
return self.lm_head
|
629 |
+
|
630 |
+
def set_output_embeddings(self, new_embeddings: nn.Module):
|
631 |
+
self.lm_head = new_embeddings
|
632 |
+
|
633 |
+
def get_decoder(self):
|
634 |
+
return self.model
|
635 |
+
|
636 |
+
def set_decoder(self, decoder):
|
637 |
+
self.model = decoder
|
638 |
+
|
639 |
+
def forward(
|
640 |
+
self,
|
641 |
+
input_ids: Optional[torch.LongTensor] = None,
|
642 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
643 |
+
position_ids: Optional[torch.LongTensor] = None,
|
644 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
645 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
646 |
+
labels: Optional[torch.LongTensor] = None,
|
647 |
+
use_cache: Optional[bool] = None,
|
648 |
+
output_attentions: Optional[bool] = None,
|
649 |
+
output_hidden_states: Optional[bool] = None,
|
650 |
+
return_dict: Optional[bool] = None,
|
651 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
652 |
+
output_attentions = (
|
653 |
+
output_attentions
|
654 |
+
if output_attentions is not None
|
655 |
+
else self.config.output_attentions
|
656 |
+
)
|
657 |
+
output_hidden_states = (
|
658 |
+
output_hidden_states
|
659 |
+
if output_hidden_states is not None
|
660 |
+
else self.config.output_hidden_states
|
661 |
+
)
|
662 |
+
return_dict = (
|
663 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
664 |
+
)
|
665 |
+
|
666 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
667 |
+
outputs = self.model(
|
668 |
+
input_ids,
|
669 |
+
attention_mask=attention_mask,
|
670 |
+
position_ids=position_ids,
|
671 |
+
past_key_values=past_key_values,
|
672 |
+
inputs_embeds=inputs_embeds,
|
673 |
+
use_cache=use_cache,
|
674 |
+
output_attentions=output_attentions,
|
675 |
+
output_hidden_states=output_hidden_states,
|
676 |
+
return_dict=return_dict,
|
677 |
+
)
|
678 |
+
|
679 |
+
hidden_states = outputs[0]
|
680 |
+
logits = self.lm_head(hidden_states).float()
|
681 |
+
|
682 |
+
loss = None
|
683 |
+
if labels is not None:
|
684 |
+
# Shift so that tokens < n predict n
|
685 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
686 |
+
shift_labels = labels[..., 1:].contiguous()
|
687 |
+
# Flatten the tokens
|
688 |
+
loss_fct = CrossEntropyLoss()
|
689 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
690 |
+
shift_labels = shift_labels.view(-1)
|
691 |
+
# Enable model parallelism
|
692 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
693 |
+
loss = loss_fct(shift_logits, shift_labels)
|
694 |
+
|
695 |
+
if not return_dict:
|
696 |
+
output = (logits,) + outputs[1:]
|
697 |
+
return (loss,) + output if loss is not None else output
|
698 |
+
|
699 |
+
return CausalLMOutputWithPast(
|
700 |
+
loss=loss,
|
701 |
+
logits=logits,
|
702 |
+
past_key_values=outputs.past_key_values,
|
703 |
+
hidden_states=outputs.hidden_states,
|
704 |
+
attentions=outputs.attentions,
|
705 |
+
)
|
706 |
+
|
707 |
+
def prepare_inputs_for_generation(
|
708 |
+
self,
|
709 |
+
input_ids,
|
710 |
+
past_key_values: Optional[torch.Tensor] = None,
|
711 |
+
attention_mask: Optional[torch.Tensor] = None,
|
712 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
713 |
+
**kwargs,
|
714 |
+
):
|
715 |
+
# Trim decoder_input_ids if past is used
|
716 |
+
if past_key_values and past_key_values[0] is not None:
|
717 |
+
input_ids = input_ids[:, -1:]
|
718 |
+
|
719 |
+
position_ids = kwargs.get("position_ids", None)
|
720 |
+
if attention_mask is not None and position_ids is None:
|
721 |
+
# Create position_ids on the fly for batch generation
|
722 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
723 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
724 |
+
if past_key_values:
|
725 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
726 |
+
|
727 |
+
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
728 |
+
if inputs_embeds is not None and past_key_values is None:
|
729 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
730 |
+
else:
|
731 |
+
model_inputs = {"input_ids": input_ids}
|
732 |
+
|
733 |
+
model_inputs.update(
|
734 |
+
{
|
735 |
+
"attention_mask": attention_mask,
|
736 |
+
"past_key_values": past_key_values,
|
737 |
+
"use_cache": kwargs.get("use_cache"),
|
738 |
+
"position_ids": position_ids,
|
739 |
+
}
|
740 |
+
)
|
741 |
+
return model_inputs
|
742 |
+
|
743 |
+
@staticmethod
|
744 |
+
def _reorder_cache(past_key_values, beam_idx):
|
745 |
+
reordered_past = ()
|
746 |
+
for layer_past in past_key_values:
|
747 |
+
reordered_past += (
|
748 |
+
tuple(
|
749 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
750 |
+
for past_state in layer_past
|
751 |
+
),
|
752 |
+
)
|
753 |
+
return reordered_past
|
754 |
+
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "<|padding|>",
|
5 |
+
"unk_token": "<|endoftext|>"
|
6 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 2048,
|
7 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|